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Abstract 
 Our daily scene visibility is degraded due to both spatial non-	
uniformities in A) illumination and B) atmospheric transmittance.  
Since the illumination extremely drops in the shade of tree or 
house and the atmospheric transmittance is disturbed by floating 
particles in the air, we never see the grand truth scenes even if 
under clear sky. This paper challenges to recover the scene color 
visibilities by removing the spatial non-uniformities of A) and B).
 Firstly, a modified BLF-SSR (Bi-Lateral Filter Single-Scale 
Retinex) is introduced to enhance the shadow visibility. A sharp 
bilateral filter is used for creating the edge-preserving surround to 
make a "halo-less" SSR like as MSR (Multi-Scale Retinex).  
 Secondly, an improved de-hazing algorithm is proposed to 
estimate the scene transmittance based on dark channel prior 
hypothesis. The proposed single image de-hazing algorithm works 
to remove the disturbances caused by atmospheric layer and to 
see the haze-free objects through the air pollution. The model 
works not only for heavy air pollution but also for thin ha scenes 
often encounters in daily life. 
 The proposed dehazing model shows "veiling factor α" is a 
key parameter for improving the usual scene's color appearance. 
The veiling factor is set to α≅ 0.9 for heavy PM 2.5 pollution 
scene, while it should be set relatively lower values such as 
α ≅ 0.7~0.2 for the daily thin hazy scene. Once estimated scene 
transmittance is used to preset the veiling factor automatically. 
 The paper introduces typical cases where Retinex and 
De-hazing work collaborative and complementary in comparison 
with state-of-the art other models. 

Introduction 
 Electronic camera is hard to catch the details in the shade of 
tree or house, while human vision can do. "Retinex" is a roots of 
vision model developed by Land and McCann[1] which restores the 
scene reflectance not by “pixel-to-pixel” but by “spatial-to-pixel” 
process like as human vision. Retinex traced a long history [2][3]. 
Jobson et al [4], and many others have advanced the Single-Scale 
Retinex (SSR) into Multi-Scale Retinex (MSR) based on the 
concept of Center/ Surround (C/S). Since the weights for creating 
MSR as an integrated sum of SSRs have been decided empirically, 
the author clarified the statistical weighting rule in the "adaptive 
scale-gain" ASG-MSR [5][6]. Though ASG-MSR works stable and 
robust, it has a drawback of high computation cost. The paper 
introduces the modified SSR as an alternative to ASG-MSR.  
 Recently, air pollution by PM2.5 becomes a serious problem at 
China and its neighbors. The de-hazing task also has been a long- 
pending question at NASA Langley Research Center. NASA 
advanced their MSR to a novel system called Visual Servo [7] for 
manipulating dense foggy aerial scenes and HDR cosmic images.    
While, different from NASA's approach, the mainstream in current 
de-hazing model is based on the atmospheric scattering physics. 
Basic theory by McCartney [8] evolved into practical single-image 
models by Fattal [9], Tan [10], Tarel [11], and Yu [12] etc. Above all, 

the Dark Channel Prior (DCP) model by He et al.[13] has been most 
attractive due to its high performance. Many papers followed DCP 
as reviewed in the survey report by S. Lee [14].  
 The key to unveiling the disturbance by air pollution is how to 
estimate the smooth transmission (depth) map. The author [15][16] 
improved He’s DCP process for estimating a banding-free depth 
map with anisotropic filtering. The model was applied to sharpen 
foreground and/or background separated by the depth map [17].  
A depth-based contrast enhancement by Galdran et al. [18] is also 
noteworthy as a variational framework. Another notable approach 
is a multi-scale STRESS model by Dravo and Herdeberg [19].  
 So far these de-hazing tasks mainly aimed at unveiling a dense 
fog, mist, or heavy PM 2.5 pollution. Though, we never see the 
grand truth haze-less scenes even under clear sky, because any 
floating particles degrade the scene visibility. Different from the 
common objective, this paper presents a joint Retinex-Dehazing 
model, which is intentionally applied to color correction even for 
daily thin hazy scenes. The idea coping with Retinex is not new, as 
reported by Xie et al. [20] or Wang and Xu [21]. Xie model 
substitutes the MSR on luminance component for the depth map, 
where the luminance MSR is adjusted to be similar to the 
DCP-based depth map. The idea looks tricky and illogical. While, 
Wang model applies a small-scale SSR to the far region and a 
large-scale SSR to the near region in the DCP-based depth map. 
This idea is simple and practical, but the effects are Retinex itself. 
 The proposed model is designed for Retinex and Dehazing 
working independent but collaborative as illustrated in Figure 1. 
The 1st stage Retinex corrects the single camera image just taken 
as under uniform illumination and the 2nd stage Dehazing 
removes the disturbance caused by passing through the 
atmospheric pollution layer. The model demonstrates how the joint 
sequential processes work collaborative to remove the two spatial 
non- uniformities, first in illumination and second in atmospheric 
transmittance according to the two steps sequential processes by 

 O(x, y)=Dehaze Retinex I(x, y){ }{ }  ;  output image    (1) 

The order of two stages may be changed, but the result is not the 
same. Retinex is used for a pre-processor as needed.    

 
Figure1. Overview of proposed model 
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Removal of Spatial Non-uniformity in 
Illumination 
SSR, ASG-MSR, and Halo-less BLF-SSR  

A camera image I(x, y) from the scene with reflectance R(x, y) 
under the illumination L(x, y) is simply given by 

I(x, y) = L(x, y)R(x, y)                         (2) 

 The major objective of Retinex is to restore the scene 
reflectance R(x, y) under unknown illumination L(x, y). 
[SSR] 
 In the basic SSR, the reflectance R(x, y) is restored by 
assuming that the spatial average Sm(x, y) of input I(x, y) 
reflects the scene illumination L(x, y) as follows. 

  

Ri (x, y)SSR
m =

Ii (x, y)
L(x, y)

≅
Ii (x, y)
 Sm (x, y)

;

    Sm (x, y)= Gm x,y( )∗ Ii x, y( )
     i = R,G,B; Gm = Kexp - x

2 + y2( ) / σm2{ };
     Gm∫∫ dxdy =1;    ∗ =Convolution

         (3) 

Surround Sm(x, y) is given by the convolution of I(x, y) and 
Gaussian function Gm (x, y) with standard deviation σm.   
[ASG-MSR: Adaptive Scale-Gain MSR] 
 Since SSR with single kernel size of Gm

 
(x, y) causes a banding 

artifact such as "halo" on the boundary between light and shade, 
MSR is mostly used in practice.  
 MSR is composed of weighted sum of SSRs with different 
scale σm as given by  

Ri x, y( )MSR = Wm
m=1

M

∑ Ri x, y( )
SSR

m

                       
(4) 

Though the conventional MSR used a constant weight Wm derived 
empirically, ASG-MSR [6] claimed a clear decision rule for Wm 
dependent to scale σm and adaptive to given image as follows.  

Ri (x,y)ASG−MSR =C
m=1

M

∑ W (σm )
Ii (x,y)
Sm(x,y)

⎧
⎨
⎩

⎫
⎬
⎭

   W σm( ) = ΣC / S σm( ) / ΣC / S σm( )
m=1

M

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

    C = range adjust  constant ≅1 / 3  default( )

   Σ C / S σm( ) =  1
XY

YSSR x,y( )− Ave YSSR x,y( ){ }⎡⎣ ⎤⎦
2

y=1

Y

∑
x=1

X

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1/2

   YSSR x,y( ) =Y x,y( ) / Sm x,y( )  : SSR for  Luminance Y

(5)        

                  

 
Here, ΣC/S(σm) denotes the standard deviation measured for each 
SSR of Luminance, YSSR (x, y) with scale σm. The weight W(σm) is 
given by the ratio of each ΣC/S(σm) vs. total sum Sum

m=1~M
ΣC / S σm( ){ } . 

Note that W(σm) reflects an index how the Retinex effects are 
distributed to	each SSR with scale σm.	
[Halo-less BLF-SSR] 
 A fatal drawback in SSR with Gaussian surround lies in "halo" 
artifact caused by the slow gradient of surround Sm across the 
boundary of light and shade, because Sm works as the denominator 
in Eq. (2). To create a halo-less SSR, Bilateral filter (BLF) is 
introduced to generate the luminance surround SBLF as given by  

S q,σ S ,σ R( )BLF = BilateralFilter Y x, y( ){ }
               = 1

W
GS p− q( )

p⊆Ω q( )
∑ GR Y p( )−Y q( )( )        (6) 

BLF is composed of a couple of two Gaussian filters GS and GR.  
GS works as a spatial filter to smooth Y(q) ; q=(x, y) for the 
neighboring pixels in p⊂Ω(q) with standard deviation σS. While, 
GR works as an edge-preserving range filter with intensity      
deviation parameter σR to suppress the smoothing for the pixels 
with high intensity gradient in the edge area. 
 The key point of proposed halo-less SSR is to use a very sharp 
range filter GR with σR << σS. Applying the new surround SBLF to 
the basic SSR in Eq. (3), a halo-less BLF-SSR is constructed as 

Ri (x, y)BLF-SSR =
Ii (x, y)
L(x, y)

≅
Ii (x, y)

 S x, y,σ S ,σ R( )BLF
          (7) 

Figure 2 illustrates BLF-SSR as an alternative to ASG- MSR. 

 
Figure 2. Halo-less BLF-SSR as an alternative to ASG-MSR 

In the proposed BLF-SSR, the new surround SBLF created from the 
luminance channel Y with sharp BLF is commonly used for all 
channels of i=R, G, B. 
 Figure 3 compares the performances on the boundary of light 
and shade. It's shown that the halo-less BLF-SSR works better than 
basic SSR and close to ASG-MSR with its reduced halo artifacts. 

 

 
Figure 3. "Halo" comparisons in three types of Retinex 
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Removal of Spatial Non-uniformity in 
Atmospheric Transmittance 
Improved Single Image Dehazing Algorithm 
 The requirements for solving the ill-posed dehazing problem 
are summarized on the following two points. 
[1] Extraction of skylight as a scene illumination 
[2] Estimation of transmission map 
 The author[15] improved He's DCP process by the method of 
l Skylight detection from local minimum in luminance Y not RGB. 
l Transmission map refining by an isotropic smoothing filter as a 

substitute for troublesome soft-matting process  
 Figure 4 illustrates the composition of camera image through  
any floating particles based on atmospheric scattering physics.  
 The objective is to restore the albedo ρ  or radiance J of  
haze-less scene by unveiling the scattered airlight from a single  
camera image I. 
 The hazed camera image I(z) is composed of the two terms as  

I(z) = J(z)t(z)+ A(1-t(z))   
       where,  J(z) = Aρ(z), t(z) = exp−β d z( )            

(8) 

The 1st term denotes the direct transmission image from the scenic 
objects and the 2nd term means the airlight scattered from the 
skylight A. The skylight A acts as a scene illumination and the 
airlight causes the hazy scene by veiling the direct transmission 
image. J(z) and ρ(z) denote the scene radiance and albedo. 
The scene transmittance t(z) is attenuated exponentially according 
to the scene depth d(z) with scattering coefficient β(λ). Since the 
Mie scattering is dominant for floating particles with larger size 
than wavelength such as PM2.5 or mist, the scattering coefficient is 
assumed to be a constant β(λ)≅β independent of wavelength. Here, 
note that z=(x, y) denotes each pixel coordinates in the 2-D camera 
image I(z) captured from the objects at scene depth d(z).  
    Now the scattered flux dF from the floating particles with a 
small volume dV at distance r is given by 

dF r,λ( ) = kβ λ( )dV, dV = r2drdω                 (9) 

Where, k means the illuminant and dω denotes a solid angle.  
Hence, the irradiance change dE by dF is described as 

dE r,λ( ) = dF r,λ( )e−β λ( )r / r2                    (10) 

The increase dL in radiance L is calculated as	

dL r,λ( ) = dE r,λ( ) / dω = kβ λ( )e−β λ( ) rdr          (11) 

Thus the accumulated scattering between r=0 (camera) and r=d 
(object) denotes the airlight radiance, that is 

L d,λ( ) = dL r,λ( )0

d
∫ dr = k 1− e−β λ( ) d( )

           
(12) 

 
Figure 4. Hazy Image caused by Atmospheric Scattering 

Since Eq. (12) denotes a monotonously increasing function, the 
airlight is more amplified as taking the longer path. 
 Letting the airlight radiance be L∞(λ) at d=∞, Eq. (12) is 
simply described for Mie scattering with β(λ)≅β as 

L d,λ( ) = L∞ λ( ) 1− e−β d( )                     (13) 

Now, the skylight is assumed to be A=k≅L∞(λ) corresponding to 
the airlight radiance at infinite distance.  

Skylight Detection 
 To estimate the skylight A, He et al. performed DCP operation 
on I(z), which selects the darkest channel in RGB and replaces the 
pixels’ values by the lowest in a local minimum filtered area Ω(z). 

I dark (z) = minw∈Ω z( )
 min
C∈ R,G,B{ }

IC (w)
⎡

⎣⎢
⎤

⎦⎥
                (14) 

As a result, the 1st J term in Eq. (8) approaches to zero. 

J dark (z) = min
w∈Ω z( )

 min
C∈ R,G,B{ }

JC (w)
⎡

⎣⎢
⎤

⎦⎥
→ 0             (15) 

This DCP hypothesis is supported by many observation data, hence 
only the 2nd term is remained as 

I dark (z) ≅ min
w∈Ω z( )

 min
C∈ R,G,B{ }

AC 1-t(w){ }
⎡

⎣⎢
⎤

⎦⎥
            (16) 

Since the transmittance t(z) goes to zero at d=∞, we get 

I dark (z)d=∞ ≅ min
w∈Ω z( )

 min
C∈ R,G,B{ }

AC
⎡

⎣⎢
⎤

⎦⎥                  
(17) 

Since the skylight A equals the airlight coming from infinite d=∞, 
He et al obtained A by finding the brightest area in I dark (z)d=∞ . 
   Different from the He’s, the proposed model applied DCP 
process only on the luminance channel Y(z). Applying a local 
minimum filter to the luminance Y(z) without taking the dark 
channel of RGB, we get 

 Y dark (z) = min
w∈Ω z( )

Y (w)                           (18) 

Thinking the local minimum in the dark channel must be reflected 
to the local minimum of Y(z), the skylight A may be estimated by 
extracting the brighter area ΩSky and taking the average as 

!A= mean
w∈ΩSky z( )

I(w){ }  for  ΩSky z( ) = area Y dark (z) ≥YH{ }
 

(19) 

This simplified method proved to be comparable to that by He et al 
as shown in Figure 5. Though the proposed method has a tendency 
to detect a little bit larger area as a skylight than that by He et al, its 
positions and colors are much the same.  

Rough Estimation of Scene Transmittance 
Normalizing Eq. (8) by the estimated skylight A~ , it’s eliminated 
from the 2nd term as 

INorm
C (z)= I

C (z)
!AC

=
JC (z)
!AC

t(z)+ (1-t(z)) for C = R,G,B   (20) 
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Figure 5. Luminance-based Skylight Detection 

He et al applied DCP to Eq. (20) again. As well, the 1st term goes 
to zero and the 2nd term is remained. Hence the scene transmittance 
is estimated as 

!t (z)He
rough

≅1− INorm
C (z)⎡

⎣
⎤
⎦
dark

=1- min
w∈Ω z( )

min
C∈ R,G,B{ }

IC (w)
AC

⎡

⎣
⎢

⎤

⎦
⎥ (21) 

Since the local minimum filter in Eq. (22) leads to a fatal banding 
artifact, the proposed model omitted this and estimated as  

  

!t (z) proposed
rough

≅1- min
C∈ R,G,B{ }

IC (z)
AC

⎧
⎨
⎩

⎫
⎬
⎭

 
                 

(22)
 

Once the skylight A and scene transmittance t(z) are estimated, the 
scene albedo is recovered from Eq. (8) as  

!ρ(z) ≅ !J(z)/ !A= I(z)/ !A-1+ !t (z)( ) / Max !t (z), t0⎡⎣ ⎤⎦
      

(23) 

Where, Max [ , ] is a limiter to take t (z) ≥ t0 at very low transmit 
-tance pixel point for the albedo !ρ(z) not to diverge. 
 Now, Figure 6 shows the scene albedo !ρ(z) unveiled with 

[1] !t (z)He
rough

 and  [2] !t (z)proposed
rough . 

Comparing both, a heavy banding artifact appears in (c) by He et al 
caused by the local minimum filter, while disappears in (d) by the 
proposed model. However, looking carefully, the back signboard or 
front people in (c) look clear than (d). That is, both have their own 

Figure 6. Problems in rough estimated scene transmittance 

drawbacks. Since the scene transmittance t(z) reflects a depth map, 
it should be flat for the objects located at the same distance. But, 
the estimated !t (z)proposed

rough in (a) looks irregular than !t (z)He
rough in (b). 

This irregularity is the drawback in proposed model and the reason 
why the sharpness is lost in Figure 6 (d). 

Refining Scene Transmittance 
 Since popular Gaussian filter causes banding artifact by edge 
blurring, two edge-preserving smoothing filters are examined:  

[A] Perona-Malik (PM) filter  [B] Bilateral (BL) filter 

   Perona-Malik filter [22] is based on anisotropic thermal 
diffusion. The scale-space diffusion across the edges in the scene 
transmittance t (z, t) is suppressed according to 

 
∂t z,τ( ) / ∂τ = div c z,τ( )∇t z,τ( )⎡⎣ ⎤⎦

                   = c z,τ( )Δt z,τ( )+∇c z,τ( )∇t z,τ( )
      (24) 

 Where, the operators denote div =Divergence, 
∇ = ∂ / ∂x,∂ / ∂y( ) =Gradient,  Δ= ∂2 / ∂x2 ,∂2 / ∂y2( ) = Laplacian , 

c(z,τ) and τ denote a thermal diffusion coefficient  and the passage 
of time as a scale parameter. 

    On the other hand, Bilateral filter [23] is composed of a couple 
of two Gaussian filters, one used for spatial smoothing and another 
for edge preserving as given by 

!t q,σ S ,σ R( )BL = 1
W

GS p− q( )
p⊆Ω q( )
∑ GR

!t p( )− !t q( )( )   (25) 

GS works as a spatial filter to smooth t(z,τ) for the neighboring 
pixels in p⊂Ω(q) with standard deviation σS. While, GR suppresses 
the smoothing for the pixels with high intensity gradient in the 
edge area by smaller σR than σS. The smoothing parameters (τ, k, 
σ) for PM (τ, k, σ) and (σS, σR) for BL (σS, σR) filters are set 
adaptive to the gradient of scene transmittance.  
Figure 7 shows how the PM and BL filters work effective. 
The de-hazing method is useful not only for a heavy polluted scene 
but also for usual camera images even if taken under clear sky. 
Since a degraded image passing through the floating particles is 
veiled with the airlight given by the 2nd term in Eq. (8), the 
haze-less grand truth scene color may be recovered by unveiling 
the scattered airlight. 

Figure 7. Smoothing effects in scene transmittance 
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Veiling Factor and Its Automatic Tuning 
 Now, the degree of airlight mixed with direct transmission light 
must be so high for heavy air pollution such as PM 2.5 at Beijing, 
but may be rather low for daily thin foggy or misty scenes.  
 Here, a veiling factor α is newly introduced to limit the scene 
transmittance in Eq. (22) with 0 < α < 1 as  

!t (z) proposed
rough

≅1-α min
C∈ R,G,B{ }

IC (y)
AC

⎧
⎨
⎩

⎫
⎬
⎭                 

(26) 

 In practice, the veiling factor is set to high value α≅0.9 for 
heavy pollution, while to the lower value α ≅0.5~0.2 for thin	
pollution. Figure 8 shows the typical de-hazed results by manual 
tuning of the veiling factors.  
 Though the optimal tuning of veiling factor is a hard task, we 
examined the following idea to estimate a reasonable α as  

α̂ ≅1−mean !t z( )smooth⎡
⎣

⎤
⎦=1−

1
XY x=1,y=1

x=X,y=Y

∑ !t (x, y)smooth

 
(27) 

This idea reuses the once estimated scene transmittance and α is 
approximated by subtracting the average transmittance from 1.0. 

De-Hazing Coping with Retinex  

Which is effective Retinex or Dehazing ? 
 Retinex and Dehazing developed independently with their 
different objectives each other, but have a common purpose to 
recover the degraded scene visibilities by removing the spatial 
non-uniformity. Both methods have their advantages. Retinex is 
very good at enhancing the local shadow visibility in the scenes 
placed under the intense shade and light. While, Dehazing works 
well to correct the color appearance by unveiling the scattered 
airlight that covers whole scene.  
Figure 9 shows typical samples Retinex and Dehazing claims their 
merits each other. Generally, the proposed BLF-SSR as well as 
ASG-MSR, is widely applied to the scenes with intense shade and 
light. On the other hand, the proposed De-hazing algorithm doesn't 
have any criterion for tuning the optimal veiling factor at present. 
In Figure 9 (a), the De-hazing task resulted in little or no effect 
even tuning the parameter α, because this scene may be mainly 
degraded not by the airlight but by the non-uniform spatial 
illumination. 

 
Figure 8. De-hazed samples by tuning veiling factor α 

 
Figure 9. Which is effective Retinex or De-hazing 

Automatic Color Correction for Daily Scenes  
	 The final goal of this paper is to restore the scene colors 
degraded by the spatial non-uniformities in both of illumination 
and atmospheric transmittance. It's a lot of fun how the synergies	
are gained by the collaboration of Retinex and Dehazing. 
 Figure 10 shows the collaboration samples applied to daily 
scenes influenced by the spatial non-uniformities in both of 
Illumination and atmospheric transmission. According to Eq. (1), 
we applied the two-stage processing, BLF-SSR first and Dehazing 
next. All processes are performed in full automatic. In the second 
Dehazing stage, the veiling factor α is estimated automatically 
using Eq. (27).  

 
Figure 10 (a). De-hazing effects by collaboration with Retinex 
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Figure 10 (b). De-hazing effects by collaboration with Retinex 

Comparison with Up-To-Date Dehazing Models 
 Lastly, the proposed model is compared with typical up-to-date 
dehazing models as collected in Figure 11. Individuality in each 
model appears scene-to-scene. Galdran in (a) is very good, while, 
the proposed model dramatically made visible the Tower in (b). 
Dravo and Hardeberg in (c) and (d) are excellent, though, the 
shadow visibility and greenish colors are better improved by the 
proposal coping with Retinex. Wang and Xu in (e) and (f) show the 
depth-dependent SSR effects, while the proposed model resulted in 
the better dehazing coping with BLF-SSR. 

Conclusions 
The paper proposed a scene color correction strategy by paying 

our attention to the spatial non-uniformities in illumination and 
atmospheric transmittance. Both non-uniformities in our daily 
viewing scenes prevent the true color reproduction. A two-stage 
model coupled with Retinex and Dehazing worked with synergetic 
effects to restore the degraded scene colors. While, the model has a 
drawback hard to reproduce an object such as floating clouds 
confusing with haze or mist. Further research for estimating more 
reliable veiling factor is left behind as a future work.  
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Figure 11. Comparison with up-to-date typical methods 
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