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Abstract 

Texture, along with color, is one of the most important 

characteristics of a material defining its appearance. While color 

had been studied for a long time and continues being an interesting 

topic, the analysis of texture has traditionally been postponed, 

mainly because of its difficulty, and remains a challenge. Depending 

on the application, different approaches to texture characterization 

have been proposed in the bibliography. In this work, texture is 

considered in the context of visual perception and the second order 

statistical measurements based on the Grey-Level Co-occurrence 

Matrix (GLCM) have been computed for a database of texture 

images (KTH-TIPS and KTH-TIPS2). In the literature, there is no 

available information about the number of features needed for 

texture characterization, although no less than five parameters are 

typically employed. In our previous work, the selection of the 

optimal texture features was studied through Principal Component 

Analysis (PCA), using only those that are statistically significant 

describing the studied textures. In this work, the texture features 

obtained were analyzed from a perceptual point of view. 

(Keywords: Image Processing, Texture Descriptors, Grey-

Level Co-occurrence Matrix, Principal Component Analysis) 

Introduction 
The influence of texture on color perception is well known and 

has far-reaching industrial relevance [1,2]. Nevertheless, texture 

samples have not yet been thoroughly studied in color science. 

Although viewing conditions include, among other parameters, the 

sample surface structure (texture), the reference conditions exhibits 

‘Sample structure: visually homogeneous’ [3]. 

A first step to include texture in color science must be the 

texture characterization through numerical values, which is the goal 

of this work. State-of-the-art texture descriptors show that texture is 

characterized mainly through its spatial properties with grey level 

images, although some methods also includes the colorimetric 

characteristic of the texture [4,5]. A variety of texture descriptors 

exits in literature, based on different ways to treat the analysis of 

textures, as for example the descriptors based on the Texton theory, 

the Wavelet approach, the Fourier approach, etc. [6,7]. In recent 

years, a variety of texture description approaches has been proposed 

[8-12]. Latest papers combine multiple texture descriptors assessing 

their complementarity, but at the cost of increase the dimensional 

final image representations [13]. 

In this work, we were interested in characterizing texture to be 

related to the way the human visual system perceives it. One of the 

very first approach to texture analysis was defined by Haralik [14]. 

It is still widely used in image segmentation and object recognition, 

applied mainly for classification of defined datasets and texture 

extraction [15-17]. In addition, Julesz [18] concludes that GLCM 

matches the human perception response to textures the best. 

Haralik’s method is based on second order statistical measurements 

through the Grey-Level Co-occurrence Matrix (GLCM). In an 

image, the GLCM is built by the frequency of occurrence of each 

two neighboring pixel combination. Thus, the features extracted 

from a texture, by this method, assume that the information in an 

image is contained in the overall spatial relationship of grey levels 

of neighboring pixels. Globally, 22 of these features describing the 

texture can be computed from GLCM. At the moment, there is no 

available information about either nor the number of features needed 

for texture characterization or the relationship with texture 

perception. In literature, usually only five among the 22 are used, 

which are: Contrast, Homogeneity, Dissimilarity, Energy and 

Entropy [19], but no reasons are exposed for that selection. 

In a previous work [20], we employed Principal Component 

Analysis (PCA) to reduce the number of possible texture features 

based on redundancy, and propose only those that are statistically 

significant for a given dataset. As a conclusion, we proposed five 

features as the most important describing the considered textures, 

which are: Difference Entropy, Sum of Squares: Variance, 

Correlation, Information Measure Correlation 2, and Information 

Measure Correlation 1, which are different from those usually used, 

listed in previous paragraph. 

The goal of this work was to study if the proposed texture 

features are related to the visual perception of them, through the 

result of a psychophysical experiment. 

Method 
Texture images used in this work were extracted from KTH-

TIPS and KTH-TIPS2 [21-22], whose names stand for “Kungliga 

Tekniska Högskolan - Textures under varying Illumination, Pose, 

and Scale”. These databases extend the so-called CUReT texture 

database, by providing variations in scale (9 different scales, but 

only 8 are common in TIPS and TIPS2), pose (three poses of the 

camera) and illumination (three and four illumination conditions for 

KTH-TIPS and KTH-TIPS2 respectively), and by imaging four 

different texture samples within every texture category in KTH-

TIPS2. The original CUReT database is a collection of 61 real-world 

surfaces, with its name standing for “Columbia-Utrecht Reflectance 

and Texture Database” [23]. 

For the goal of this work, using the whole database was not 

necessary.  Only the images obtained as a combination of the frontal 

position of the camera and all illumination positions (from the front, 

from the side at roughly 45° and from the top at roughly 45°, plus 

fluorescent ambient lab light only in TIPS2), and scale #5 (distance 

between sample and camera of 28 cm) were considered. In total, 206 

images were chosen 30 from KTH-TIPS (10 types of textures *3 
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illumination positions) and 176 from KTH-TIPS2 (11 types of 

textures *4 types of sample per texture *4 illuminations). 

For the computation of GLCM, and subsequently the 22 texture 

features, the orientation and displacement between neighbor pixels 

had to be established. On the one hand, as the GLCM can be 

computed for four different orientations (horizontal 0º, vertical 90º, 

and two diagonals 45º and -45º), in this work the average of the four 

directions was used as suggested in the literature. On the other hand, 

displacement of the GLCM is the distance between two pixels 

whose repetition is examined. It can be only one pixel distance or 

up to any reasonable value. Our results in a previous work [24] 

suggest that the distance which gives the maximum Contrast (one of 

the feature computed from GLCM) should be the best for the 

computation of the GLCM, as it could mean that there is a big 

difference between the two pixels selected to be neighbors, lowering 

the possible averaging effect. This conclusion gives us a possibility 

to define a new criterion for the computation of GLCM, that we call 

the Maximum Contrast Distance (MCD) criterion. By implementing 

this criterion the majority of texture features exhibit constant 

behavior with the change of scale, as it recomputed the distance for 

the feature calculations with every distance and it adjusts the change 

that the change of scale is introducing [24]. 

Under these considerations, the 22 texture features were 

computed from the GLCM, using MATLAB®. The GLCM was 

computed in the CIELAB L* channel, because several works proved 

that the majority of texture information is located on this channel 

[25]. Since all the 22 features are correlated to some extent, they 

should provide redundant information. Therefore, the selection of 

the best set of features becomes a dimensionality and redundancy 

reduction task. By applying PCA to the extracted texture features 5 

principal component (PC) were found, which correspond to the 

following features: 

 

PC1: Difference Entropy. 

PC2: Sum of Squares: Variance. 

PC3: Correlation. 

PC4: Information Measure Correlation 2. 

PC5: Information Measure Correlation 1. 

 

It is interesting to note that PCA also gives a biplot containing 

all the samples and all the features together. For the purpose of the 

psychophysical experiment performed, the Squared Cosine 

observed from the PCA biplot.was used to select the samples best 

described by each factor. 

A visual experiment was performed to compare the perceptual 

results with the computed features. The observers were asked to 

order a set of images according to their texture strength. One set of 

texture images was considered per each one of the texture features 

(PC) selected by PCA, mentioned above, as can be seen in Fig. 1. 

Each group has 8 samples selected varying the most in only one PC, 

while the others should be as constant as possible, except groups 1 

and 2 that have 7 samples. To give the observers a benchmark, a 

solid gray sample was added to the each one of the 5 groups. In 

addition, the average sample of the dataset (value zero of the Square 

Cosine) was also added (with a dark gray square in Fig. 1). 

Observers were warned to focus on the texture itself, rather 

than the nature of the image, and try to response as spontaneous as 

possible. As color influences the perception of texture, and vice 

versa, to allow the observers to focus on texture as much as possible, 

selected color samples (43 images) were mapped to gray using the 

LCH mapping method [26], by taking into account the pixel 

deviation to the mean chroma and luminance values. Additive 

mapping was used for each sample, and the mean luminance value 

was set to CIELAB L*=70 so that it is different from the neutral gray 

(L*=53) used as background. As images were displayed, after 

mapping, mean luminance in Adobe RGB color space was 

normalized by adjusting the image histogram [24]. 

 

 

 

 

 

 

Figure 1. Set of images in each of the five group. Numbers and grey square 
were not displayed in the experiment, and was used for analysis of the results. 

Table 1 shows the 22 features for the samples of the group 1. 

The five selected features are marked in blue. Please, note that the 

feature corresponding to group 1 is “denth”. 
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Table 1. Texture features for the 9 samples of the group 1. Last two columns shows mean and deviation (blue for features selected 

by PCA, red for most changing, green for highest correlation, and yellow for the finally selected feature). 

Feature 

Sample 

Mean Deviation 

1 2 3 4 5 6 7 8 9 

autoc 34.43 34.50 33.84 34.26 34.43 34.74 34.96 34.86 36.00 34.67 0.60 

contr 1.72 1.82 6.71 4.13 2.39 2.21 0.89 0.35 0.00 2.25 2.07 

corm 0.00 -0.01 0.03 -0.08 -0.13 -0.05 0.01 0.12 0.00 -0.01 0.07 

corrp 0.00 -0.01 0.03 -0.08 -0.13 -0.05 0.01 0.12 0.00 -0.01 0.07 

cprom 12.23 13.89 135.86 35.45 9.41 11.46 2.65 0.93 0.00 24.65 43.03 

cshad -1.79 -1.96 -7.42 -2.05 -0.15 0.43 -0.10 -0.02 0.00 -1.45 2.44 

dissi 0.92 0.93 2.05 1.57 1.21 1.16 0.66 0.33 0.00 0.98 0.62 

energy 0.14 0.14 0.03 0.05 0.07 0.07 0.19 0.44 1.00 0.24 0.31 

entro 2.49 2.52 3.75 3.36 2.85 2.84 2.04 1.23 0.00 2.34 1.14 

homom 0.65 0.65 0.45 0.50 0.56 0.57 0.70 0.84 1.00 0.66 0.17 

homop 0.62 0.62 0.37 0.44 0.51 0.53 0.69 0.84 1.00 0.62 0.20 

maxpr 0.29 0.30 0.07 0.10 0.13 0.13 0.37 0.63 1.00 0.33 0.31 

sosvh 35.11 35.22 37.02 36.14 35.44 35.66 35.23 34.85 35.81 35.61 0.66 

savgh 11.74 11.75 11.62 11.73 11.76 11.80 11.83 11.80 12.00 11.78 0.10 

svarh 103.73 103.64 93.01 97.68 102.77 102.88 110.25 118.18 144.00 108.46 15.10 

senth 1.64 1.66 2.35 2.03 1.71 1.75 1.37 0.95 0.00 1.50 0.68 

dvarh 1.72 1.82 6.71 4.13 2.39 2.21 0.89 0.35 0.00 2.25 2.07 

denth 1.23 1.25 1.79 1.57 1.32 1.29 0.97 0.66 0.00 1.12 0.53 

inf1h 0.00 0.00 0.00 -0.01 -0.02 -0.01 0.00 -0.07 0.00 -0.01 0.02 

inf2h 0.04 0.03 0.05 0.15 0.21 0.17 0.05 0.25 0.00 0.11 0.09 

indnc 0.91 0.91 0.82 0.85 0.88 0.88 0.93 0.96 1.00 0.90 0.06 

idmnc 0.98 0.97 0.92 0.95 0.97 0.97 0.99 0.99 1.00 0.97 0.03 

 

 

Because of the selection criterion, it is expected that the biggest 

change, and consequently the biggest standard deviation, occur for 

the feature that is selected to be the representative for that group. 

However, this is not the case as all the five features are changing 

(even all the 22 features), as can be seen in Table 1 for the group 1. 

Similar results were obtained for the rest of the groups. 

For visual experiment, the selected images were displayed, 

using JavaScript code, on calibrated LCD HP 2510i monitor in a 

dark room. Calibration was performed by a GretagMacbeth Eye-

One Display. The white point was set to chromacity coordinates - 

0.3244,0.3418 with a luminance of 248.5 cd/m2. Black point 

luminance was 0.247 cd/m2. All the values were measured with a 
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spectrophotometer spectroradiometer (Photo Research 704). 

Monitor resolution was set to its native, 1920x1080px. In order to 

remove any external influence the screen was isolated with gray 

panels, as can be seen in Fig. 2. The images were presented in two 

rows on a grey background (L*=53), as shown in Fig. 2. Each image 

sample subtended 7.5° of visual angle from the position of the 

observer, which was approximately 45 cm from the monitor. 

 

 

Figure 2. Setup and performance of the experiment. 

A panel of 28 observers (16 experts and 12 non-experts) with 

normal or corrected vision and normal color vision (tested with 

Ishihara test) participated in the experiment in the age range between 

21 and 51 years. From the 16 experienced observers 11 are female 

and 5 male while from the non-experts 8 are female and 4 are male. 

This makes a total of 19 female and 9 male observers. 

The observers were adapted to the grey background for 2 min 

before each session. In the experiment observers were instructed to 

arrange presented images according to their texture visibility, where 

the first in order should be image with no texture (solid color) 

starting in the upper left corner of the scale (Fig. 2). Accordingly, 

the last one should be an image where texture is most noticeable in 

the bottom right corner of the scale. Observers were allowed to drag 

and drop images, changing their positions. There were not time-

limited. The current order was stored in a database using AJAX call 

to Ruby on Rails application. Database system used was 

PostgreSQL. The observers were asked to perform two repetitions 

on two different days. 

Results 
To check the observer’s reliability, the STRESS and PF3, have 

been applied to the results [27]. The intra observer variability has 

been calculated between the two repetitions the observers performed 

for each of the five groups of images and their mean was calculated. 

The inter observer variability was obtained by calculating the 

measures for the global mean scale from all the observers for a given 

group and each observers mean scale. Then the mean of the five was 

obtained. The intra-observer variability was 24.47 (standard 

deviation 15.71) and 23.59 (standard deviation 10.83), and the inter-

observer variability was 31.83 (standard deviation 6.59) and 27.01 

(standard deviation 4.07), PF/3 and STRESS values respectively. 

The STRESS and PF\3 were shown to be in the desired range 

according to the literature [28]. 

 

Table 2. Mean and standard deviation of sample position for the five groups of samples (blue for the average sample of the dataset, 

green for the highest position, and red for the lowest position inside the group). 

Group 
1 

Sample 1 2 3 4 5 6 7 8 9  
Sum 

deviation 

Mean position 
(deviation) 

5.38 
(1.27) 

5.13 
(1.30) 

7.91 
(2.24) 

6.58 
(1.31) 

6.98 
(1.37) 

5.66 
(1.87) 

4.13 
(2.10) 

2.23 
(0.80) 

1.00 
(0.00) 

 12.26 

Group 
2 

Sample 10 11 12 13 14 15 16 17 18   

Mean position 
(deviation) 

5.45 
(2.20) 

5.34 
(1.56) 

6.42 
(1.70) 

6.04 
(1.78) 

3.98 
(2.59) 

5.11 
(1.53) 

4.17 
(2.20) 

7.49 
(2.47) 

1.00 
(0.00) 

 16.03 

Group 
3 

Sample 19 20 21 22 23 24 25 26 27 28  

Mean position 
(deviation) 

7.17 
(2.57) 

6.70 
(1.54) 

8.64 
(1.71) 

6.02 
(2.02) 

6.34 
(1.78) 

6.40 
(1.95) 

7.62 
(1.20) 

3.02 
(0.31) 

2.09 
(0.30) 

1.00 
(0.00) 

13.38 

Group 
4 

Sample 29 30 31 32 33 34 35 36 37 38  

Mean position 
(deviation) 

7.79 
(2.95) 

5.25 
(1.63) 

5.55 
(1.39) 

4.62 
(1.58) 

4.06 
(3.06) 

4.77 
(2.42) 

6.77 
(2.02) 

7.23 
(2.08) 

7.96 
(2.07) 

1.00 
(0.00) 

19.20 

Group 
5 

Sample 39 40 41 42 43 44 45 46 47 48  

Mean position 
(deviation) 

7.62 
(3.19) 

6.60 
(1.55) 

4.32 
(1.41) 

6.55 
(1.75) 

6.34 
(1.82) 

4.74 
(2.30) 

7.58 
(1.95) 

7.81 
(1.80) 

2.43 
(1.05) 

1.00 
(0.00) 

16.80 
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Table 2 shows the mean position (average of all observers) of 

each sample within a group and its standard deviation. Last column 

shows the sum of deviations. The smallest deviation between the 

observers appears in the group 1. This would suggests that for these 

samples, corresponding to PC1, the observers have the most 

constant discrimination. This can be expected because these samples 

represent the ones with the biggest variation. Therefore, this group 

can be considered as the easiest for the observers. 

Table 3. Coefficient of correlation between22 features and the 

mean order (green for maximum correlation and blue for the 

features selected by the PCA). 

Features 
Group 

1 
Group 

2 
Group 

3 
Group 

4 
Group 

5 

autoc 0.8142 0.7165 0.5694 0.3187 0.6825 

contr 0.7160 0.5446 0.676 0.4882 0.6674 

corrm 0.2934 0.0612 0.0114 0.2328 0.0002 

corrp 0.2934 0.0612 0.0114 0.2328 0.0002 

cprom 0.3875 0.3839 0.4158 0.5541 0.4616 

cshad 0.3452 0.3247 0.3154 0.6963 0.2978 

dissi 0.9157 0.6885 0.8822 0.6389 0.7843 

energ 0.7932 0.6938 0.9088 0.6691 0.7957 

entro 0.9479 0.7694 0.9541 0.8376 0.8868 

homom 0.9659 0.7206 0.9454 0.7047 0.8255 

homop 0.9706 0.7152 0.9414 0.7002 0.8174 

maxpr 0.9170 0.6831 0.9112 0.7374 0.8242 

sosvh 0.2616 0.1129 0.1125 0.2776 0.0858 

savgh 0.7551 0.8191 0.8307 0.7332 0.7624 

svarh 0.8581 0.7827 0.9437 0.8076 0.8572 

senth 0.9056 0.801 0.9338 0.9055 0.8722 

dvarh 0.7160 0.5446 0.676 0.4882 0.6674 

denth 0.9298 0.7769 0.9579 0.7603 0.8749 

inf1h 0.1258 0.0056 0.0007 0.0781 0.0001 

inf2h 0.0151 0.0203 0.1657 0.1551 0.0249 

indnc 0.9491 0.7093 0.9156 0.6751 0.8019 

idmnc 0.7666 0.5699 0.7229 0.5135 0.6814 

Furthermore, the low sample positions (red in the table) have 

in general low deviation while high sample positions have big 

deviation (green). This can suggest that the observers are more 

constant in deciding about weaker textures, whereas strong textures 

are perceived differently. This finds analogy with color 

discrimination, as it is known that small color differences are 

discriminated and quantified more easily than big color differences. 

It is interesting to see that the average sample (blue) is more or 

less around the middle of the scale for every experiment, supporting 

the PCA findings about the average sample of the dataset used. 

Table 3 summarizes the correlation (R2 coefficient) between 

the 22 features and the mean order that the experiment provides, to 

see how important are the features perceptually and which ones are 

the most important for each set of samples. Green shadow marks the 

features with high correlation for each experiment while blue marks 

the features selected by PCA to be representative for the group, for 

which the highest correlation would be expected. However, the 

results show that the feature with the highest correlation is not the 

feature selected by the PCA for each group. This suggests that the 

results the PCA provides are not perceptual, meaning that visually 

other features are more important for the observers. Thus, PCA 

gives different features for a mathematical description of the texture, 

but does not provide features more related with the perception of the 

texture. 

Looking at Table 4, which shows the correlation between all 

the features and the PCs, it can be seen that PCA indicates which 

features are redundant, especially for PC1. However, it cannot select 

precisely the one that has the biggest perceptual importance. This 

means that the perceptual and feature scale are not the same in a 

sense that small numerical change in a feature (which is considered 

in PCA analysis) might mean a big perceptual change and vice 

versa. For example, in Table 1, which shows the features computed 

for the set of samples of the group 1, the feature “homop” has quite 

small standard deviation, but it is the feature most correlated with 

perception in that group (see Table 3). On the other hand, the feature 

“cprom” has very high deviation (see Table 1) but very low 

correlation with perception (see Table 3). This means that a small 

change in “homop” is visually more significant for the 

discrimination of the samples than a big change in “cprom”. 

Conclusively, PCA works properly for dimensionality reduction, 

but it cannot select the perceptually best features. Besides, the 

interpretation of the principal planes is not clear from the PCA 

results, as the samples of the used texture dataset are much centered 

and do not have a sufficient variation. Thus, the projection of the 

samples does not separate the given set of samples completely and 

moreover visually. 

However, it can be concluded that the features that are 

perceptually more significant are the ones having the highest 

correlation in each group, showed in the brackets (see Table 3): 

 

PC1: Homogeneity (0.9706) 

PC2: Sum Average (0.8191) 

PC3: Difference Entropy (0.9579) 

PC4: Sum Entropy (0.9055) 

PC5: Entropy (0.8868) 

 

This selection would mean that, from the perceptual point of 

view, in general, the Entropy is quite an important feature and it also 

exhibits big deviation compared to the mean in the five groups, as 

obtained in a previous work [29]. On the other hand, this selection 

shows the redundancy of the features one more time. Looking at the 

three formulas for different entropy calculations, the redundancy 

27524th Color and Imaging Conference Final Program and Proceedings



 

 

between them is clear. Thus, two (PC1 and PC2) of the five features 

selected according to the results can be kept and the other three 

(PC3, PC4, and PC5) should be chosen according to other criteria to 

remove the redundancy. As Sum Entropy has the highest correlation 

from the three with all the other groups, it can be kept as it is a good 

feature to explain all the images and it is different from Homogeneity 

and Sum Average (Table 3). 

Table 4. Correlation between the texture features and the PC 

(green for high correlation). (Table 21) 

Feature PC1 PC2 PC3 PC4 PC5 

autoc -0.521 0.823 0.147 -0.113 -0.122 

contr 0.897 0.096 0.284 -0.202 0.199 

corrm -0.151 -0.240 0.789 0.299 -0.451 

corrp -0.151 -0.240 0.789 0.299 -0.451 

cprom 0.737 -0.047 0.546 -0.239 0.264 

cshad 0.605 -0.178 0.530 -0.179 0.324 

dissi 0.975 0.170 0.047 -0.064 0.070 

energ -0.819 -0.163 0.267 -0.278 0.316 

entro 0.948 0.172 -0.056 0.110 -0.217 

homom -0.943 -0.218 0.215 -0.089 0.083 

homop -0.949 -0.221 0.189 -0.075 0.063 

maxpr -0.842 -0.186 0.290 -0.259 0.266 

sosvh -0.367 0.886 0.212 -0.160 -0.088 

savgh -0.488 0.836 0.139 -0.117 -0.129 

svarh -0.684 0.681 0.166 -0.190 0.033 

senth 0.943 0.114 0.082 0.129 -0.265 

dvarh 0.897 0.096 0.284 -0.202 0.199 

denth 0.979 0.142 -0.020 -0.008 -0.079 

inf1h -0.225 0.244 0.145 0.747 0.519 

inf2h 0.012 0.348 0.092 0.835 0.367 

indnc -0.977 -0.191 0.042 0.012 -0.021 

idmnc -0.926 -0.119 -0.226 0.167 -0.169 

Based on internal computations, Sum variance can be a better 

feature than Difference Entropy as it has higher correlations with all 

perceptual scales and it is different from Homogeneity, Sum Entropy 

and Sum Average. Finally, for the fifth feature Maximum Probability 

can be selected as it has higher correlation with the majority of the 

perceptual scales and it is different from Homogeneity, Sum 

Entropy, Sum Variance and Sum Average. Therefore, the new and 

final list of features is (correlation value in the brackets): 

 

PC1: Homogeneity (0.9706) 

PC2: Sum Average (0.8191) 

PC3: Sum Variance (0.9437) 

PC4: Sum Entropy (0.9055) 

PC5: Maximum Probability (0.8242). 

 

Even though PCA was shown to be not related to perception, it 

provided initial steps towards finding the features with high 

perceptual correlation. Firstly, it allowed selecting the samples for 

the visual experiment and computing the features with the highest 

perceptual correlation. The final set of perceptually most important 

features was then proposed based on having independent features 

with the highest perceptual correlation. 
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