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Abstract
ICC profiles are widely used to provide transformations be-

tween different color spaces in different devices. The color look-
up tables (CLUTs) in the profiles will increase the file sizes when
embedded in color documents. In this paper, we discuss a com-
pression method that decreases the storage cost of the CLUTs. A
compressed color table includes quantized DCT coefficients for
the color table, the additional nodes with large color difference,
and the coefficients bit assignment table. This method supports
lossy table compression to minimize the network traffic and delay,
and also achieves relatively small maximum color difference.

Introduction
Color Management plays an important role in color repro-

duction and transformation of color information between various
devices. Device profiles provide color management systems with
the information necessary to convert color data between native
device color spaces and device-independent color spaces. The In-
ternational Color Consortium (ICC) profile framework has been
used as a standard to communicate and interchange between var-
ious color spaces.

An ICC output profile mainly consists of color lookup ta-
ble (LUT) pairs, so-called A2B and B2A tables, where A and
B denote the device-dependent and the device-independent color
spaces, respectively. For different devices, there are different LUT
rendering intent pairs. For example, for CMYK output devices,
there are three LUT pairs, enumerated from 0 to 2, enabling the
user to choose from one of the three possible rendering intents:
perceptual, colorimetric, or saturation [1].

ICC profiles are often embedded in color documents to
achieve color fidelity between different devices, which increases
the total size of these documents. The size of color tables will also
increase with finer sampling of the spaces and larger bit depths.
Each graphical element or image in a document may have its own
ICC profile. In some cases, including the source CMYK profile
can exceed the size of the image or graphical element itself. Thus,
a method to compress the LUTs in the ICC profile while achieving
small color difference and large compression ratio is desirable for
the purpose of conserving memory and storage, and also reducing
network traffic and delay.

Compression methods exploit two separate characteristics of
the data: irrelevance and redundancy. Irrelevance refers to infor-
mation that does not need to be kept for the reconstruction. Lossy
methods exploit irrelevance, and lossless methods do not. Re-
dundancy refers to the repetitive or statistical dependencies in the
data, and can be removed via both lossless and lossy methods.
The objective of compression is to reduce the irrelevance and re-

dundancy of the data in order to be able to store or transmit the
data effectively.

A variety of methods have been proposed to compress im-
ages and videos. But few compression methods have been used
to compress color tables. Reference [2] does propose a prepro-
cessing method for lossless compression of color look-up tables.
Their method is based on hierarchical differential encoding and
cellular interpolative predictive coding methods. Here, we pro-
pose to use a lossy method, followed by a lossless method to
compress the color tables that are part of the ICC profile. The
lossy method will be tailored to the specific characteristics of the
color tables to be compressed. The lossless method is generic,
and could be used to compress a variety of different types of data
streams.

Accordingly, we first review two major categories of lossy
methods that could be applied to this problem. Wavelet compres-
sion methods have been used for lossy 2D image and 3D video
compression. [3] summarized image compression methods using
coding of wavelet coefficients. [4], [5] are widely used efficient
wavelet compression methods which have proved very successful
in still image coding. [6], [7] proposed three-dimensional wavelet
compression methods to efficiently encode 3D volumetric image
data and video coding. The Discrete Cosine Transform (DCT)
has also been widely used in image compression [8] and video
compression [9].

For our color table compression problem, we are inspired by
the various video compression methods. But the color table data
has very different characteristics than video data, and the quality
considerations are also very different. The color tables can be
both 3D and 4D. Thus, we need to explore the characteristics of
the color tables accordingly.

In this paper, we propose a color table compression method
based on the multi-dimensional DCT. The compressed data con-
sists of three types of information: the quantized DCT coefficients
for the color table, the additional nodes with large color difference
or visual importance, and the Coefficients Bit Assignment Table
(CBAT) that we propose. If we compress the B2A tables, we
evaluate the compression results using the A2B tables of the ICC
profile. That is, we first compress the B2A tables, for example,
the L∗a∗b∗ to CMY K. We convert the reconstructed CMY K val-
ues to L∗a∗b∗ using the A2B tables in this profile, and calculate
the color difference in CIELAB space. Our color table compres-
sion method may be generalized to other settings in which color
look-up tables need to be compressed.

The paper is organized as follows. We first introduce the
framework for color table compression. Then we describe the
decoding process. Finally we evaluate our results in terms of color
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difference.

Framework for Color Table Compression
Figure 1 provides a high-level view of the color table

compression-reconstruction process. The compression process
consists of two stages: a lossy stage that exploits specific char-
acteristics of the color table data to be compressed, followed by a
lossless stage that is more generically designed to compress any
kind of data. The reconstruction process consists of a decoding
step that inverts the encoding step, except for the loss, which is
not recovered.

Figure 1. Compression-reconstruction process.

As shown in Fig. 2, we employ a DCT compression method
followed by a standard lossless compression technique, such as
the Lempel-Ziv-Markov chain-Algorithm (LZMA) [10] or GZIP
[11] to achieve high compression rates. As our ICC profile may
contain a 3D or 4D color table, we will use a 3D or 4D DCT
method, accordingly.

Figure 2. Compression framework.

Figure 3. Workflow of the compression method.

Figure 3 contains a detailed block diagram of the compres-
sion method. Normally, color tables representing different render-
ing intents are included with one ICC profile. We assume there are

N color tables for an ICC profile: CLUT1,CLUT2, ...,CLUTN . We
assume there are Jin channels in the input color space, and Jout
channels in the output color space. Normally, Jin and Jout can be
3 or 4. For each output channel, we assume that the LUT con-
tains MJin nodes, where M is the number of nodes of each input
channel.

Applying the Jin-dimensional DCT transform to the color
tables CLUTi, we obtain as many DCT coefficients as there are
nodes in the original color table. In the next step, we quantize the
AC coefficients using a fixed step size ∆, and round to the nearest
integer. We round the DC coefficients to the nearest integer, so
they are effectively quantized to step size ∆ = 1.

ACcoe fq =
⌊

AC Coe f f icient
∆

⌉
, (1)

DCcoe fq = bDC Coe f f iciente , (2)

where b·e denotes the rounding operation.
After obtaining the quantized DCT coefficients,we need to

reorder the Jin-dimensional quantized coefficients to a 1D data
stream in a certain order. As the energy after the DCT transform
concentrates in the low frequency domain, we can use 3D zigzag
ordering to reorder our data. Figure 4 shows the ordering process
of 3D zigzag. The traversal is such that the planes i+ j+k = c are
visited in increasing order of c and a 2D zigzagging is performed
within each plane [9]. Such traversal of the quantized coefficients
from low-to-high frequency introduces a large amount of redun-
dancy to our coefficient bit assignment table, which we will soon
discuss, thus allowing efficient packing of the data.

Figure 4. 3D zigzag ordering: planes with i+ j+k = 1 and i+ j+k = 2 (after

[9]).

After obtaining the 1D quantized DCT coefficients, we write
them to a binary file, followed by a standard lossless compression
technique like LZMA. Then we use the quantized coefficients to
calculate the coefficient bit assignment table (CBAT), which is
used for the decoding process.
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Coefficient Bit Assignment Table
The Coefficient Bit Assignment Table stores the information

of how many bits are assigned to each coefficient. To quantize a
real number in the range −0.5 to L− 0.5 to an integer value, we
need dlogLe bits. As an alternative to implementing the logarithm
function directly, Fig. 5 shows a method for determining dlogLe
that can be implemented very efficiently in an embedded system.
As the coefficient can be a negative number, we need one more
bit for the sign.

Figure 5. Algorithm to count bits needed for a given DCT coefficient.

We use a different CBAT for each output channel. As there
are Jout output channels, we will have Jout CBATs in one ICC pro-
file. The nodes in each CBAT are the same as in the original color
table. Now we will discuss how to calculate each CBAT. We will
use the quantized DCT coefficients to calculate the CBAT. For
a certain output channel, we denote the quantized DCT coeffi-
cient as Qi, j, where i = 1,2, ...,N is the color table number, and
j = 1,2, ...,MJin is the node number. The number of bits needed
for Qi, j is

Bi, j =

{ ⌈
log|Qi, j|

⌉
+1 if |Qi, j|> 0

0 if |Qi, j|= 0
. (3)

We use L j to represent the CBAT value in node location j, and it
can be calculated by

L j = max
1≤i≤N

(Bi, j). (4)

The remaining question about the CBAT is what is the total size
needed to store it. For the CBAT, we assign a fixed number of bits
for every node. Assume we assign a bits for every node in the
CBAT, then

a = max
1≤ j≤MJin

(
⌈
logL j

⌉
). (5)

So the total size of one CBAT is aMJin bits. Although it
is a fixed number, after the 3D zigzag ordering, the neighboring
nodes tend to have similar value. Thus the total CBAT size can
be reduced significantly by the lossless compression stage. We
discussed above how to calculate the the size of the CBAT for one
output channel. We then use the same method to calculate the
sizes for the rest of the CBATs. Combining them, we can obtain
the total size for all Jout CBATs.

Determining Step Size ∆

Another question is how to choose ∆. If ∆ is large, we can
achieve a large compression ratio; but the color difference will
be large at the same time. If ∆ is small, the color difference is
small; but the compression ratio will be limited. To achieve high
compression ratio and small color difference at the same time, we
store the nodes with large color difference separately.

For a fixed ∆, we compress the color tables using the method
discussed above. After inverting this compression process, we
obtain the reconstructed color tables. Figure 6 shows how to cal-
culate the compression ratio for a given ∆ and target maximum
color difference ∆Emax when storing additional nodes.

Figure 6. Process to calculate compression ratio for a given ∆ and ∆Emax

when storing additional nodes.

Reducing the Maximum Color Difference
After we obtain the reconstructed color table, we can calcu-

late the color difference between the values in the original and
reconstructed color tables (details are discussed in the Evaluation
Process section). Figure 7 shows clipped histograms of color dif-
ferences for three different color tables. The color tables on which
this data is based are described in the Results section. The his-
togram values are clipped to the range 0 to 10 so that we can see
clearly that the number of nodes with large color difference is
limited.

We then store the nodes that have a large color difference
separately to improve the maximum color difference across all
color tables. First, we set a target maximum color difference
∆Emax. Second, we find the nodes among all the color tables
where ∆E > ∆Emax, and store those node locations and node val-
ues directly.

If we have MJin nodes in a table, then for each input channel
we need dlogMe bits to store the location. So we need dlogMeJin
bits to store all the Jin input channel locations. For each out-
put channel, we need b bytes (as indicated in the ICC profile

262 © 2016 Society for Imaging Science and Technology



bytedepth field) to store the value. So we need bJout bytes to store
all the Jout output channel values. So in total, for each node that
we wish to store directly, we need additional dlogMeJin/8+bJout
bytes. This method also provides the option to store the nodes
with significant visual importance directly without any loss.

Modified Compression Method
Figure 8 shows the relation between the compression ratio

and step size ∆ when we store the additional nodes where ∆E >
∆Emax separately. The color tables on which this data is based are
described in the Results section.

We can see from the figure that for each fixed target ∆Emax,
as ∆ increases, the compression ratio first increases, and then de-
creases after a peak compression ratio value is reached. That is be-
cause when ∆ increases, the compression is more aggressive, and
the error ∆E gets larger. Thus, the number of the reconstructed
nodes which have ∆E > ∆Emax will increase. So we will store

Figure 7. Clipped histograms of color differences.

Figure 8. Compression ratio delta curve.

more nodes directly, thereby reducing the efficiency of the lossy
phase of our compression method. Therefore, the peak value is
the optimal balance between the compression ratio and the color
difference.

Our final output bit stream consists of three parts: CBATs,
quantized DCT coefficients, and additional nodes. When ∆ in-
creases, the size of quantized DCT coefficients will decrease but
the number of nodes with large ∆E will increase. So we want to
find a balance between the two parts. For a fixed target ∆Emax,
we find the optimal ∆opt when it achieves maximum compres-
sion ratio in the compression ratio delta curve. Figure 9 shows
the modified workflow of the compression method that includes
storing these additional nodes.

Figure 9. Modified workflow of the compression method in which additional

nodes are stored.

Decoding Process
The decoding process extracts CBATs, quantized DCT coef-

ficients, and the nodes locations and values from the compressed
data.

Figure 10 shows the workflow of the decoding process. First,
we apply the standard lossless decompression technique, such as
inverse LZMA or inverse GZIP, to the compressed data to get the
binary stream. Next we use the CBATs to tell how many bits of
the binary stream belong to each node location. Then we can get
the reconstructed DCT coefficients. We apply the Inverse DCT
transform to the coefficients, multiply by the quantizer step size
∆, and round to the nearest integer to obtain the initial recon-
structed color tables. We add back the additionally stored nodes
to the initial reconstructed color tables, and obtain the final recon-
structed color tables. Then the reconstructed Jin-dimensional to
Jout -dimensional color tables can be used.

Evaluation Process
The method we discussed above can be used for A2B and

B2A tables. When compressing B2A color tables, we use A2B
color tables to evaluate. When compressing A2B color tables, we
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evaluate the color difference directly. For different input and out-
put spaces, we will use different evaluation metrics, accordingly.

Now we will describe the evaluation process of the CIELAB
space to give a more concrete idea. After compressing the B2A
tables, our evaluation process will measure the color difference
between the original color table and the reconstructed color table
in CIELAB space.

For a given input triple L∗a∗b∗ as in the B2A table, we use
the tetrahedral interpolation [12] method for the original color ta-
ble and the reconstructed color tables separately, and obtain the
output triple or quadruple values. The choice of this interpolation
method is based on the premise that it is what would be used in
the implementation of the color tables in an actual color imag-
ing system workflow. If this is not the case, a different interpo-
lation method can be used, as appropriate. If the B2A table is
from L∗a∗b∗ to CMY K, then the output quadruples are CMY K
and CMY Kr for the original and reconstructed tables, respec-
tively. Using A2B tables which are the output triple or quadruple
to L∗a∗b∗, we transform tables to interpolate the output triple or
quadruple, and obtain L∗a∗b∗ and L∗a∗b∗r . We calculate the color
difference ∆E between the original table and the reconstructed ta-
ble. The color difference between two samples in CIELAB can
be calculated using [13]:

∆E =
√

(L∗−L∗′)2 +(a∗−a∗′)2 +(b∗−b∗′)2, (6)

where L∗,a∗,b∗ are for the original color tables, and L∗′,a∗′,b∗′

are for the reconstructed color tables. The error is computed at all
points in the input color space. We can also use other models to
calculate the ∆E, such as CIECAM02 [14] and CIEDE2000 [15].
While using other measures for color difference may be expected
to have some effect on the compression ratios that can be realized,
our overall method and the benefits that can be achieved with it
should still be valid. Figure 11 describes the evaluation process.

Figure 10. Decoding process.

After compressing the B2A color tables, we transform to
A2B color tables in order to calculate the color difference. Af-
ter compressing the A2B color tables, we calculate the color dif-
ference directly from the compression output triples instead of
transforming to B2A color tables and calculate.

Figure 11. Evaluation workflow.

Results
Some sample ICC profiles can be downloaded from [16]. We

present experimental results for the CGATS21 CRPC7.icc pro-
file. In this profile, the B2A tables are from L∗a ∗ b∗ to CMY K,
so Jin = 3 and Jout = 4. And M = 33, so there are MJin = 333

nodes for each output channel. The byte depth of the table is
b = 2. In total, there are bJoutM jin = 2 · 4 · 333 = 287,496 bytes
in one B2A table. There are N = 3 rendering intents, so we have
287,496 · 3 = 862,488 bytes for all the B2A tables. These B2A
tables are the tables we are going the compress. The A2B tables
are from CMY K to L∗a∗b∗, so Jin = 4 and Jout = 3. And there are
174 nodes for each output channel. Table 1 shows the parameter
values for each type of color table. We are going to compress the
B2A tables first, and use the A2B tables to evaluate the compres-
sion performance.

From Fig. 8 we can see that for a maximum target ∆Emax =
3, a compression ratio of 69 can be achieved. Table 2 shows
for ∆Emax = 1,2, or 3, the highest compression ratio that can be
achieved, the average ∆E, and the standard deviation of the ∆E
among all the color tables in the ICC profile. Figure 12 shows the
compression performance curves of the average, standard devia-
tion and maximum ∆E among all color tables in the ICC profile
mentioned above. For a specific ∆Emax, we can look up from the
figure what is the highest compression ratio that can be achieved.
From the results, we can also see that the average ∆E and standard
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Table 1: Parameters for the Color Tables
Type B2A A2B
Byte Depth 2 2
Jin 3 4
Jout 4 3
M 33 17
N 3 3
Total Size
(Bytes)

862,488 1,503,378

deviation are quite small, which indicates good performance.

Table 2: Compression Performance
∆Emax Compression

Ratio
Average ∆E Std.Dev.

∆E
1 15.52:1 0.39 0.25
2 41.65:1 0.60 0.40
3 68.76:1 0.78 0.54

Figure 12. Compression performance curve.

Conclusion
We have proposed a compression framework for color look-

up tables, for which there is no constraint on the dimensions of
the input or output color spaces. Our compression method en-
ables the encoding of color tables in the ICC profile by storing
the information in three parts: Coefficient Bit Assignment Tables
(CBATs), quantized DCT coefficients, and additional nodes. It
also provides the flexibility to store customized color nodes. Our
multi-dimensional DCT compression method provides significant
compression and small color difference at the same time. The cur-
rent A2BX and B2AX tags do not support a compression scheme,
thus providing such a mechanism within the framework of the
ICC would be beneficial. As ICC profiles are widely used in var-
ious devices and platforms, our compression method has a wide
application prospect. This method can also be extended to other
color workflows.

Future Work
We can explore if the smoothness of the compressed look-up

tables can be preserved in the future.
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