
An iccMAX Material Profile Example: Converting Spectral Im-
ages of Artwork to Paint-Concentration Images
Ben Bodner, Roy S. Berns; Munsell Color Science Laboratory; Rochester Institute of Technology; Rochester, NY

Abstract
The ICC is introducing a new standard, iccMAX, that allows

for customized connection spaces. The step-by-step process of
implementing a complex linear algorithm in an iccMAX material
profile is presented. This provides a reference for creating icc-
MAX profiles that use the programmable calculator functionality.
The algorithm converts spectral reflectance to paint concentra-
tions that produce a spectral match. Several tools are discussed
that produce iccMAX profiles for a spectral workflow being de-
veloped at the Studio for Scientific Imaging and Archiving of Cul-
tural Heritage at RIT.

Introduction
The International Color Consortium (ICC) provides a

widely-used international standard for digital color management.
Embedding an ICC profile in a digital image file allows for consis-
tent color reproduction of that image across various devices with
different native color spaces. The previous specification, ICC.1,
is designed around one Profile Connection Space (PCS) that is
based on colorimetry and a single illuminant, observer, and light-
ing geometry.

The new specification, iccMAX, is more versatile. Profiles
can be defined to convert encoded image data to a colorimetric
PCS with any illuminant and observer, to a spectral PCS, or to a
Material Connection Space (MCS) with flexibility in the number
and meaning of channels. iccMAX profiles can also contain com-
plex programmable functions for conversion between connection
spaces. These new capabilities provide a standard for color man-
agement of spectral images. They also can be used to create anal-
ysis tools that are embedded in spectral image files, themselves.

The Studio for Scientific Imaging and Archiving of Cul-
tural Heritage at RIT is developing a workflow for high-resolution
spectral imaging of artwork. An iccMAX profile is presented
here that converts spectral images of paintings to images whose
channels represent component paint concentrations. Because icc-
MAX has many profile types and countless features, the learning
curve for building and using iccMAX profiles is steep. This arti-
cle presents a linear algorithm, explained concisely in Part I, and
describes how to implement it as an iccMAX MCS profile step-
by-step in Part II. This example can be used as a reference for the
iccMAX programmable calculator and illustrates the usefulness
of MCS profiles.

The full iccMAX specification, software for compiling the
profile described here, and other sample profiles are currently
available by request at http://www.color.org/iccmax/index.xalter
Software tools developed at the Studio for Scientific Imaging
and Cultural Heritage Archival are available for download at
https://www.rit.edu/cos/colorscience/mellon .

Part I: Algorithm Background
Paint Application of Kubelka-Munk Theory

Kubelka-Munk theory is an optical mixing model that is ap-
plicable to many subtractive color systems. Colorants are com-
bined in terms of spectral absorption and scattering in the two-
constant theory (2KM), or a ratio of the two in single-constant
theory (1KM), rather than reflectance or radiance. The single-
constant theory assumes that the scattering coefficient of chro-
matic colorants is negligible compared to the scattering of the
substrate, which can lead to error for certain colorants. Berns and
Mohammadi[1] described the steps to calculate 2KM and 1KM
coefficients for paints, where white paint is analogous to a sub-
strate. They compared the accuracy of both approaches in predict-
ing the spectral properties of mixtures of white with a single chro-
matic paint. Their results showed that the extra effort required for
the 2KM approach was worthwhile in many cases. Abed[2] per-
formed a similar comparison with a larger set of paints and more
complex mixtures, and found that the 1KM approach often caused
large errors while 2KM performed well in almost all cases.

Estimating Paint Concentrations of a Mixture
Allen developed a generalized linear algorithm to calculate

the concentrations of a given set of colorants needed in a mixture
to colorimetrically match a sample using any single-constant sub-
tractive model[3], and later adjusted this algorithm to fit specifi-
cally with two-constant Kubelka Munk theory[4]. If the colorants
are the same as the ones used to create the sample, the resulting
concentrations should produce a match in spectral reflectance be-
tween the calculated mixture and the sample. The 2KM version
of the Allen algorithm assumes a mixture of four colorants and
a substrate. Berns[5] adjusted the algorithm for three chromatic
paints and one white paint, removing the substrate term.

The absorption-scattering ratio of a sample can be calculated
from its internal reflectance. Internal reflectance is the amount
of diffuse light in the paint layer, different from the surface re-
flectance measured with a spectrophotometer. The measured re-
flectance can be corrected to internal reflectance using the equa-
tion described by Saunderson[6]:

Ri =
Rm−κinsκ1

(1−κ1)(1−κ2)+κ2Rm−κinsκ1κ2
(1)

where Ri is internal reflectance, Rm is measured reflectance, and
the κ terms are constants that can be optimized for the measure-
ment geometry and subtractive mixing model being used. For the
system used in this example, the terms were optimized to κ1 = .03
and κ2 = .65 by Okumura [7]. For this example, the impact of
κins was found to be negligible, so it was set to 0 to simply the
implementation. The Allen algorithm is divided into a first step
where initial concentrations are estimated for a close match, then

242 © 2016 Society for Imaging Science and Technology

https://doi.org/10.2352/ISSN.2169-2629.2017.32.242
©2016; Society for Imaging Science and Technology

an iterative step that converges to an exact match. Both steps rely
on values calculated similarly to XYZ tristimulus values that use
2KM coefficients in place of reflectance. These can be thought of
as pseudo-tristimulus values XP,Y P, and ZP :

XP

Y P

ZP

=

x̄
ȳ
z̄

E(Dkk+Dss) (2)

x̄, ȳ, and z̄ are row vectors containing color matching func-
tions. E is a diagonal matrix containing the spectral radiance of
the illuminant used for matching the mixture and sample. k and s
are column vectors containing spectral absorption and scattering
coefficients, respectively. Dk and Ds are diagonal matrices con-
taining the partial derivatives of internal reflectance of the sample
with respect to k and s:

Dk =
−2Ri,a

2

sa(1−R2
i,a
)
,Ds =

Ri,a(1−Ri,a)

sa(1+Ri,a)
(3)

where the subscript a denotes the sample. It’s very unlikely that
the scattering coefficient sa of the sample will be known, because
only the ratio (K

S) can be calculated from reflectance:

(K
S

)
=

(1−Ri)
2

2Ri
(4)

An assumption is made that sa = 1 at all wavelengths and ka =
(K

S)a. When the iterative step of the algorithm is reached, sa and
ka will be adjusted to more accurate values.

Pseudo-tristimulus values are calculated using equation 2 for
the sample denoted by subscript a, the chromatic paints denoted
by p1, p2, and p3, and the white paint denoted by w. k and s
of the individual paints should already be known, and the 2KM
coefficients that will be used in this example were measured by
Okumura[7]. The initial concentration estimates for the chromatic
paints are calculated using these pseudo-tristimulus values with
an inverse matrix operation:

cp1

cp2

cp3

=

(XP
p1
−XP

w
) (XP

p2
−XP

w
) (XP

p3
−XP

w
)

(Y P
p1
−Y P

w
) (Y P

p2
−Y P

w
) (Y P

p3
−Y P

w
)

(ZP
p1
−ZP

w
) (ZP

p2
−ZP

w
) (ZP

p3
−ZP

w
)


−1(XP

a
−XP

w
)

(Y P
a
−Y P

w
)

(ZP
a
−ZP

w
)


(5)

The sum of all four paint concentrations will equal 1, so the con-
centration of white is simply cw = 1− (cp1 + cp2 + cp3).

In the iterative step, the reflectance of the mixture is cal-
culated using the initial concentrations and compared to the re-
flectance of the sample. First, the standard 2KM mixture equation
is applied using the four paint concentrations to determine (K

S) of
the calculated mixture

(K
S

)
m =

cp1 kp1 + cp2 kp2 + cp3 kp3 + cw kw

cp1 sp1 + cp2 sp2 + cp3 sp3 + cw sw

(6)

Internal reflectance is calculated using the inverse of equation 4:

Ri = 1+
(K

S

)
−
√(K

S

)2
+2
(K

S

)
(7)

and measured reflectance of the mixture is found using the inverse
of equation 1:

Rm =
((1−κ1)(1−κ2)Ri)

(1−κ2Ri)
+κinsκ1 (8)

The measured reflectance of the sample and calculated mix-
ture are used to find the XYZ tristimulus values of each, using the
same color matching functions and illuminant used when finding
pseudo-tristimulus values in equation 2. The inverse matrix from
equation 5, which was initially calculated with sa = 1, is recal-
culated with sa = sm. The scattering coefficient of the mixture,
Sm, is equal to the denominator of equation 6. The inverse ma-
trix is multiplied by a column vector containing the differences in
tristimulus values between the sample and mixture:

∆cp1

∆cp2

∆cp3

=

(XP
p1
−XP

w
) (XP

p2
−XP

w
) (XP

p3
−XP

w
)

(Y P
p1
−Y P

w
) (Y P

p2
−Y P

w
) (Y P

p3
−Y P

w
)

(ZP
p1
−ZP

w
) (ZP

p2
−ZP

w
) (ZP

p3
−ZP

w
)


−1Xa −Xm

Ya −Ym

Za −Zm


(9)

The ∆c values are added to the corresponding concentrations
found in equation 5, and the new concentrations are used to up-
date the mixture. The tristimulus values of the updated mixture
will be closer to the sample. Equations 6 to 9 are repeated and
the concentrations are updated with each iteration. If the paints
chosen are capable of reproducing the sample, the difference in
tristimulus values between the sample and mixture will converge
to 0.

Part II: iccMAX Implementation
Material Connection Spaces

ICC Profiles translate data between color spaces to allow for
connections between measurement devices, encoding, and dis-
play. Many profiles have predefined relationships between these
spaces, such as profiles that translate color defined in spectral
channels to colorimetric channels. Material profiles in the icc-
MAX standard allow the user to define the number and the mean-
ing of channels however they wish, with the expectation that two
material profiles intended to connect between one another share
at least some of the same user-defined channels.

MVIS and MLNK profiles define the relationship between a
material color space and useful output spaces, such as displayed
RGB values or spectral data. MID profiles define the relationship
between input data and the material color space. This example
shows an MID profile that translates input spectral data to paint
concentrations, using the algorithm described in the previous sec-
tion.

Creating an MID Profile
ICC profiles can be written in XML format. Profile informa-

tion is placed inside tags defined by the ICC, denoted by angle

24324th Color and Imaging Conference Final Program and Proceedings

brackets. This example includes essential tags to create a func-
tioning MID profile that converts color data. Other tags not in-
cluded here that provide metadata such as copyright information
and intended use of the profile may be expected in a compliant ic-
cMAX profile. More detailed information on profile tags is avail-
abe in the iccMAX specification document.

This example will use a spectral image of a painting with 28
channels. The painting consists of four paint types with known
spectral absorption and scattering coefficients.

The Header
XML files begin with a tag stating the XML version in use

and how it is encoded. The first line of the .XML file is:

〈?xml version=”1.0” encoding=”UTF-8”?〉

declaring that the file is written in unicode characters. After the
XML version declaration, the rest of the file contains the ICC
profile code. The entire profile is enclosed in IccPro f ile tags. The
profile version, type, and number of input and output channels are
enclosed in Header tags:

〈IccPro f ile〉
〈Header〉
〈Pro f ileVersion〉5.0〈/Pro f ileVersion〉
〈Pro f ileDeviceClass〉mid〈/Pro f ileDeviceClass〉
〈DataColourSpace〉nc001C〈/DataColourSpace〉
〈MCS〉mc0003〈/MCS〉
〈/Header〉

Profile version 5.0 allows the use of material profiles. The
profile type MID is specified in the Pro f ileDeviceClass tag. The
DataColourSpace tag describes input channels, where nc speci-
fies device input channels and 001C is the hexidecimal represen-
tation of 28, the number of spectral channels in the input image.
The MCS tag is used to describe the output of the profile, where
mc specifies that output will be user defined material channels and
0003 is the hexidecimal representation of 3, the number of paint
concentration channels in the output.

Channel Definitions
The remaining profile code after the header is enclosed in the

Tags tag. A detailed description of the output channels is enclosed
in the TagArrayType tag:

〈tags〉
〈tagArrayType〉
〈TagSignature〉mcta〈/TagSignature〉
〈ArraySignature〉ut f 8〈/ArraySignature〉
〈ArrayTags〉
〈ut f 8TextType〉〈TextData〉C redOxd〈/TextData〉
〈/ut f 8TextType〉
〈ut f 8TextType〉〈TextData〉C ultBlu〈/TextData〉
〈/ut f 8TextType〉
〈ut f 8TextType〉〈TextData〉C ylwOcr〈/TextData〉
〈/ut f 8TextType〉
〈/ArrayTags〉
〈/tagArrayType〉

The Tag Signature mcta specifies that these are material
channels with custom names, and the Array Signature ut f 8 spec-
ifies the names will be unicode text. The three material channel
names are provided in the ArrayTags tag, named for the concen-
tration of red oxide, ultramarine blue, yellow ochre. Including a
white paint channel would be redundant becaused its value can be
found by subtracting the sum of the three chromatic concentra-
tions from 1. An MVIS or MLNK profile that connects this ma-
terial space to an output space should include some or all of these
channel names. The system described in this example would use
an MVIS profile that defines concentration channels for all the
paint types characterized by Okumura[7] and converts them to
display RGB space.

Processing Elements
Processing instructions to convert input channels to material

channels are enclosed in the MultiProcessElementsType tag:

〈multiProcessElementType〉
〈TagSignature〉A2M0〈/TagSignature〉
〈MultiProcessElements InputChannels = ”28”
Out putChannels = ”3”〉
〈CalculatorElement InputChannels = ”28”
Out putChannels = ”3”〉

The MultiProcessElementsType block begins with the Tag Sig-
nature A2M0, indicating this processing converts from input data
(A) to material data (M). The MultiProcessElements tag spec-
ifies the number of input and output channels of the process-
ing step. The only processing element used in this example is
a CalculatorElement, so it has the same number of input and out-
put channels. The tags left open here will be closed at the end of
the processing step.

The calculator consists of two parts. First, sub-elements are
defined that contain data other than the image data, or instruc-
tions other than those in the MainFunction of the calculator. The
second part is the MainFunction, where processing occurs. The
MainFunction can call upon built in operators to process data and
the sub-elements defined earlier. The concentration estimation al-
gorithm requires additional data aside from the input image data.
The 2KM coefficients of the four paints, the illuminant spectral
radiance, and the color matching functions will be defined using
subelements:

〈SubElements〉
〈 !−−Element 0 − absorption coe f f icients −−〉
〈MatrixElement InputChannels = ”4”
Out putChannels = ”28”〉
〈MatrixData〉...〈/MatrixData〉
〈/MatrixElement〉
〈 !−−Element 1 − scattering coe f f icients −−〉
〈MatrixElementInputChannels = ”4”
Out putChannels = ”28”〉
〈MatrixData〉...〈/MatrixData〉
〈/MatrixElement〉
〈!−−Element2− illuminant−−〉
〈MatrixElementInputChannels = ”1”
Out putChannels = ”28”〉
〈MatrixData〉...〈/MatrixData〉

244 © 2016 Society for Imaging Science and Technology

〈/MatrixElement〉
〈!−−Element3− cm f −−〉
〈MatrixElementInputChannels = ”28”
Out putChannels = ”3”〉
〈MatrixData〉...〈/MatrixData〉
〈/MatrixElement〉
〈/SubElements〉

The values in the MatrixData tags would be numeric and
organized in a matrix. The number of rows corresponds to the
output channels specified in the MatrixElement tag and the num-
ber of columns corresponds to the input channels.

The Stack Calculator
The iccMAX calculator allows for data processing using a

customized set of linear operations. This calculator is stack-
based, meaning all values used for calculation are held in a one-
dimensional array, where the first value in the array is the bottom
of the stack and the last value is its top. Typically, only values at
the top of the stack can be accessed, and the result of any opera-
tion is placed on top of the stack.

This section will describe several different operators used
in the implementation of the concentration estimation algorithm.
These operators exemplify different categories of operators that
interact with the stack in different ways. Each code example is
followed by the resulting contents of the stack. Multiple lines of
code will be accompanied by the results of each line shown sepa-
rately. A full list of operators is available in the iccMAX reference
specification.

The calculator instructions are enclosed by the
MainFunction tag:

〈MainFunction〉
in(0,28) %Rm

Stack Contents: ‖Rm,1, ...,Rm,28

The in operator retrieves image data. The arguments of the in
operator specify which channels ill be retrieved. Channels (along
with the stack) are indexed starting with 0, so this command re-
trieves 28 channels of data starting with the first (0th) channel.
In otherwords, all channels in the image are placed on the stack.
w Operators are separated by spaces, and most are followed by
parentheses containing arguments. Line spacing does not affect
the calculator, except that all text placed after a % symbol on any
given line is ignored by the calculator, which is useful for com-
menting.

To calculate internal reflectance, as in equation 1, a second
copy of the measured reflectance is placed onto the stack and the
value κ2 is placed on top

copy(28,1) .65

‖Rm,1, ...,Rm,28,Rm,1, ...,Rm,28,0.65

The copy(q, t) operator copies the top q values on the stack
t times. Simply typing a number will place it on top of the stack.
κ2 needs to be multiplied by the top set of Rm values.

smul(28)

‖Rm,1, ...,Rm,28,0.65 · [Rm,1, ...,Rm,28]

The smul(q) operator multiplies the single value on top of the
stack by each of the preceding q values of the stack. smul is an
abbreviation of ”single multiplication” and other similar operators
follow the same naming convention (eg. sdiv and ssub).

1 1 .03 .65
sub(2) mul
sadd(28)
div(28) %Results in Ri

‖Rm,1, ...,Rm,28,0.65 · [Rm,1, ...,Rm,28],1,1, .03, .65
‖Rm,1, ...,Rm,28,0.65 · [Rm,1, ...,Rm,28],(0.97) · (0.35)
‖Rm,1, ...,Rm,28,0.65 · [Rm,1, ...,Rm,28]+ .3395
‖[Rm,1, ...,Rm,28]/[0.65 · [Rm,1, ...,Rm,28]+ .3395]

To complete equation 1, the values [1,1,κ1,κ2] are placed on
the stack. The sub(q) command subtracts the top q values from
the preceding q values. A set of similar arithmetic operators, such
as add(q) and div(q), behave in the same manner. This is useful
for element-wise operations on pairs of arrays.

Because Ri is used several times throughout the algorithm,
it would be useful to store it elsewhere to be accessed later. This
can be achieved using the temporary stack:

tsav(0,28) %put Ri on the temp stack

‖Ri,1, ...,Ri,28

tsav(q, t) copies the top t elements on the stack onto a tem-
porary stack, starting with index q of the temporary stack. Al-
though this data structure is named ”the temporary stack” in the
iccMAX documentation, it behaves more like a traditional array.
Any element of the temporary stack can be accessed at any time,
not just the top elements. tsav does not affect the values on the
main stack. Operators tadd(q, t) and tget(q, t) move values to and
retrieve values from the stack, respectively.

For the iccMAX implementation, it’s easiest to rearrange the
pseudo-tristimulus calculation from equation 2 and the inverse-
matrix operation from equation 5 into one equation:

cp1
cp2
cp3

=(T E[Dk(Φk− kwu)+Ds(Φs− swu)])−1

·T E[Dk(ka− kw)]

(10)

T is a matrix of color matching functions as row vectors, Φk is
a matrix of column vectors kp1,kp2, and kp3, Φs is a similar ma-
trix of paint s values, and u is row vector [1,1,1]. Values for all
the terms in equation 10 were stored in the profile’s subelements
block earlier, with the exception of the derivative weight terms Dk
and Ds and the sample absorption term ka. The term Ds(sa− sw)
is omitted from the equation because sw and sa are both equal to
1 at all wavelengths.

As shown in equation 3, Dk and Ds are based on the internal
reflectance of the sample. For the initial concentration estimate
calculated in equation 10, it is assumed that ka = (k

s)a and sa = 1
at all wavelengths. Equation 4 shows that (k

s)a also relies on Ri.
Ri currently sits on the main stack and the temporary stack. The
numerator of equation 4, (1−Ri)

2 is found in three steps:

24524th Color and Imaging Conference Final Program and Proceedings

-1 smul(28)
1 sadd(28)
sq(28)

‖0− [Ri,1, ...,Ri,28]
‖1− [Ri,1, ...,Ri,28]
‖[1− [Ri,1, ...,Ri,28]]

2

ssub can’t be used to directly find (1−Ri), because it sub-
tracts the top value from the preceding values. The first two lines
achieve the equivalent operation (1+(−Ri)). sq(q) squares the
top q values on the stack. The denominator of equation 4 is 2Ri,
so Ri will need to be retrieved from the temporary stack:

tget(0,28) 2 smul(28)
div(28) 0 0 0 1
mtx(0) %k w
sub(28) %k a - k w

‖[1− [Ri,1, ...,Ri,28]]
2,2 · [Ri,1, ...,Ri,28]

‖ka,1, ...,ka,28,0,0,0,1
‖ka,1, ...,ka,28,kw,1, ...,kw,28
‖ka,1− kw,1, ...,ka,28− kw,28

tget(q, t) copies t consecutive values from the temporary
stack starting with index q. Values retrieved from the temporary
stack are copied, not moved. If more than one set of values is
stored on the temporary stack, it’s helpful to keep track of indices
corresponding to different values through comments. Dividing
the bottom half of the stack by the top half with div results in ka.

The mtx(q) operator uses the q sub-element to perform a ma-
trix multiplication on a column vector. If sub-element q is not a
MatrixElement, an error will occur. The column vector is taken
from the stack, and the number of elements used depends on the
InputChannels setting in the MatrixElement. Sub-element 0 was
the matrix of paint absorption coefficients, with kw in the fourth
column. Multiplying the matrix by [0,0,0,1]T places the fourth
matrix column on the stack.

Calculating Dk, Ds, and completing the latter half of equa-
tion 10 can be accomplished using the operators discussed thus
far:

tget(0,28) sq(28) 0 2 sub smul(28) %Dk numerator
1 copy(1,27) tget(0,28) sq(28) sub(28) div(28) %Dk
mul(28) %Dk(k a - k w)
1 mtx(2) mul(28) mtx(3) % illuminant and cmf data
tput(28,3) % T E Dk(ka− kw)

‖ka,1− kw,1, ...,ka,28− kw,28,−2 · [Ri,1, ...,Ri,28]
2

‖ka,1− kw,1, ...,ka,28− kw,28,Dk,1, ...,Dk,28
‖Dk,i · [ka,1− kw,1, ...,ka,28− kw,28]
‖T EDk(ka− kw)
‖

Sub-element 2 is a single column matrix with illuminant
data, and sub-element 3 is a 3x28 matrix of color matching func-
tions. The final matrix multiplication results in just three values
on the stack, described as pseudo tristimulus values in equation 2.
Moving these three values onto the temporary stack leaves the
main stack empty.

Calculator Sub-Elements
Users can define their own operators in the SubElements

block with the tag CalculatorElement. A calculator sub-element
has all the same properties as the main calculator but it is called
as an operator at the user’s request in the main calculator. A cal-
culator sub-element has its own stack and can have its own ”sub-
sub-elements”. The number of input channels is defined in the
CalculatorElement tag, and the values for these input channels
are taken from the top of the stack of the main calculator.

Two calculator sub-elements make sense for this implemen-
tation. The first takes sa values from the stack as 28 input chan-
nels, and calculates T E[Dk(Φk − kwu) + Ds(Φs − swu)], which
will be referred to as matrix B. This would be accomplished us-
ing a very similar method to the set of steps described in detail to
solve for T E[Dk(ka− kw)]. This calculator sub-element is useful
because the matrix needs to be calculated twice, first with sa = 1 at
all wavelengths when calculating the initial concentrations, then
with sa = sm during the iterative step. It should be inserted in the
subelements block as sub-element 4.

Once matrix B is calculated, the resulting nine values on the
stack must be arranged as a 3x3 matrix, inverted, and multiplied
by T E[Dk(ka− kw)]. This is possible using the solv operator:

1 copy(1,28) calc(4)
tget(28,3) solv(3,3) pop
tput(31,3) %initial concentrations

‖matrixB
‖Cp1,Cp2,Cp3

calc(4) calls sub-element 4 as a calculator, with the 28 input
channels representing sa = 1 in this case. tget(28,3) places the
result of T E[Dk(ka−kw)] on the stack. solv(q, t) creates a column
vector from the top q values on the stack, and a matrix from the
preceding q · t values on the stack, with q rows and t columns.
The column vector is multiplied by the inverse or pseudo-inverse
of the matrix, and the result is placed on the stack. Additionally,
the solv operator places a 1 on the stack to indicate the inverse
operation was applied successfully. The pop operator removes
this value from the stack. The three values remaining on the stack
will be the initial concentration estimates for the three chromatic
paint channels, which are moved to the temporary stack.

For the iterative step, it makes sense to use a second calcu-
lator sub-element. This is sub-element 5, and should be inserted
in the subelements block. This calculator takes 31 input channels
from the stack, which should be the 28 image channels containing
Rm values followed by the three chromatic paint concentrations
found in the previous step. It copies the last three input values to
its temporary stack, and calculates measured reflectance Rm of a
mixture using equations 6 to 8. XYZ tristimulus values are found
for the mixture and image, and the difference ∆XY Z is saved to
the temporary stack.

sm, the scattering coefficient of the mixture, is found using
the denominator of equation 6. The matrix B is then updated with
the new sm values using calculator sub-element 4. The updated
matrix B is multiplied by the ∆XY Z values, as in equation 9. The
resulting ∆C values are added to the corresponding input concen-
trations, which were saved on the temporary stack, and the up-
dated concentrations are output.

246 © 2016 Society for Imaging Science and Technology

The final lines of the main calculator should place Ri, the
image input, and the initial concentrations on the stack, then re-
peatedly call calculator sub-element 5. No looping functionality
is currently available in the iccMAX, so calc(5) must be called
multiple times manually. The number of iterations required for
convergence depends on the properties of the paints in the mix-
ture, and the level of acceptable error. The tristimulus errors with
the initial concentration estimates are typically less than 1%, but
some paint combinations can take over 100 iterations to converge.

tget(0,28) in(0,28) tget(31,3)
%Ri,Ra,initial concentrations calc(5) calc(5) calc(5).... %re-
peated many times
out(0,3) }
〈/MainFunction〉
〈/CalculatorElement〉
〈/MultiProcessElements〉
〈/multiProcessElementType〉
〈/Tags〉
〈/IccPro f ile〉

The out(q, t) operator outputs the top t values from the stack
starting with channel q. In the calculator sub-element, these val-
ues are placed on the stack of the main calculator. After the last
calc(5) call, the concentration values on top of the stack are out-
put to the MID material channels and all remaining open tags
from earlier in the profile are closed.

Preliminary Results
A spectral image with known paint concentrations that was

measured by Abed [2] was used to test the iccMax implementa-
tion of this algorithm. A few problem pixels existed where the
measured reflectance in the spectral image fell outside the theo-
retical gamut of the paints, possibly due to errors in the spectral
image capture. For the vast majority of locations in the 400x270
pixel image, the concentrations were calculated accurately, as
shown in Figure 2.

Table 1: Algorithm Performance
Iterations Error

Mean 0.53 0.6%
Max 5000 100%
90th prctl 0 1.6%

A MatLab implementation of the algorithm was used to eval-
uate the number of iterations necessary for convergence. The
threshold for tristimulus error was set to 1% of the measured tris-
timulus values, with a maximum of 5000 iterations. As shown
in table 1, at least 90% of pixels were below the tristimulus error
threshold with the initial concentration estimate and no iterations
were required, and 90% of pixels had errors in paint concentration
less than 1.6%.

Conclusions and Future Work
A linear algorithm for estimating paint concentrations from

spectral data that fits within the iccMAX framework was pre-
sented. Preliminary testing of an implementation of the algorithm
shows that it can produce accurate results as part of the spec-
tral workflow established at the Studio for Scientific Imaging and
Archiving of Cultural Heritage at RIT. Adjustments will be made
to the algorithm to allow for artwork composed of more than three

Figure 1: The test image displayed as RGB under D50.

−

−

−

0.1+

0.05

0
Figure 2: Maximum error of all three concentration channels at every
pixel. Concentrations have values between 0 and 1, white represents an
error of 0.1

chromatic paints. Several tools are being developed at the Studio
that will generate iccMAX profiles based on user selections in a
GUI, allowing easy creation of profiles that use different wave-
length inputs and paint outputs. iccMAX profiles are also being
created for a new high-resolution spectral camera being developed
in the Studio. The iccMAX standard will be a vital part of sharing
work produced using the Studio’s spectral workflow.

References
[1] R.S. Berns and M. Mohammadi, ”Evaluating Single- and Two-

Constant Kubelka-Munk Turbid Media Theory for Instrumental
Based Inpainting”’, Studies in Conservation, vol. 52, pp. 299-314,
2009.

[2] F.M. Abed, ”Pigment Identification of Paintings Based on Kubelka-
Munk Theory and Spectral Images”, Ph.D. Dissertation, Rochester
Institute of Technology, NY, 2014.

[3] E. Allen, ”Basic Equations Used in Computer Color Matching”, J.
Optical Society of America, vol. 56, no.9, pp. 1256-1259, 1966.

[4] E. Allen, ”Basic Equations Used in Computer Color Matching, II.
Tristimulus match, Two-Constant Theory”, J. Optical Society of
America, vol. 64, no. 7, pp. 991-993, 1974.

[5] R.S. Berns, ”A Generic Approach to Color Modeling”, Color Re-
search and Application, vol. 22, no. 5, pp. 318-325, 1997.

[6] J.L. Saunderson, ”Calculation of the Color of Pigmented Plastics,” J.
Optical Society of America, vol. 32, pp. 727-736, 1942.

[7] Y. Okumura, ”Developing a Spectral and Colorimetric Database of
Artist Paint Materials” M.S. Thesis, Rochester Institute of Technol-
ogy Rochester, NY, 2005.

24724th Color and Imaging Conference Final Program and Proceedings

