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Abstract
Defining color spaces that provide a good encoding of

spatio-chromatic properties of color surfaces is an open problem
in color science [8, 22]. Related to this, in computer vision the
fusion of color with local image features has been studied and
evaluated [16]. In human vision research, the cells which are se-
lective to specific color hues along the visual pathway are also
a focus of attention [7, 14]. In line with these research aims,
in this paper we study how color is encoded in a deep Convolu-
tional Neural Network (CNN) that has been trained on more than
one million natural images for object recognition. These convo-
lutional nets achieve impressive performance in computer vision,
and rival the representations in human brain. In this paper we
explore how color is represented in a CNN architecture that can
give some intuition about efficient spatio-chromatic representa-
tions. In convolutional layers the activation of a neuron is related
to a spatial filter, that combines spatio-chromatic representations.
We use an inverted version of it to explore the properties. Using a
series of unsupervised methods we classify different type of neu-
rons depending on the color axes they define and we propose an
index of color-selectivity of a neuron. We estimate the main color
axes that emerge from this trained net and we prove that color-
selectivity of neurons decreases from early to deeper layers.

Introduction
Although color is by definition a property of a point of a

surface, in most visual tasks it requires to be described as a non-
isolated point. It usually appears influenced by the shape and
types of materials of the surface, the lighting effects of the sur-
round and the observer conditions. All of these, obligate to de-
scribe the spatio-chromatic properties of a surface as a whole. The
representation of spatio-chromatic properties can be studied from
different points of view.

In color science, color appearance models [8] have defined
spaces and methods to describe spatial effects in color percep-
tion. In human vision, one focus of attention to study the spatio-
chromatic representations in the visual pathway has been measur-
ing color selectivity of specific cells, concluding with the impor-
tance of single and double-opponent cells [14, 7]. In computer
vision, where the goal is to build good computational models to
perform visual tasks, such as object recognition, the evaluation
of different methods to fuse color and local image features has
attracted most of the interest [16].

Currently, in computer vision image feature selection and
classification is mainly driven by the impressive results provided
by deep convolutional networks. These networks are built with
different architectures and are trained to perform different visual
tasks. In general, they are based on hierarchical feedforward ar-
chitectures combining different levels of convolutional and pool-
ing layers. After being trained with large image datasets they
provide excellent local color-feature selectors to encode invariant

representations of complex objects at the top of the net.
Although these successful architectures are designed to solve

engineering problems, they show some biological inspiration
which can be proved in different aspects of these architectures:
(a) a deep hierarchy similar to the different stages of the ventral
stream of the human visual system, (b) layers based on a bank of
convolution operations encoding the translation-invariant spatial
properties of specific features across the visual field, and (c) the
max pooling and subsampling steps that insert some local toler-
ance and introduce scale invariance along the hierarchy. These
properties already appeared in previous bio-inspired models like
HMAX [13]. Based on these ideas, Kriegeskorte in [10] has re-
cently proposed deep neural networks as a framework to model
biological vision and brain information processing.

Considering the amazing performance of human brain in ob-
ject recognition, that is achieved with invariance to lighting, spec-
ularities or any surrounding influence that varies the color, in this
paper we use a trained CNN to understand how color is repre-
sented in this architecture. Exploring the properties of how color
is encoded in a CNN can allow a double outcome, on one side to
get new inspiration about how spatio-chromatic representations
can be improved and on the other side a better understanding on
how CNN is encoding visual information, that is a central topic in
computer vision.

We perform two main analysis in the paper: (1) we build a
decoded version of the spatial filter associated to a neuron, and we
use it to classify the neurons in terms of their color representation,
(2) we analyze the images which provoke maximum activations
of a given neuron and we propose an index to evaluate their color
selectivity property. This work is a first approach towards the
understanding of color in CNN, and multiple research lines are
opened from the conclusions we present after the analysis.

The paper is organized as follows, in the next section we
define a CNN and afterwards we explain how we perform the filter
projection, this is a generic estimation of the properties of the filter
in the image space. Subsequently, we use a series of unsupervised
methods to classify different type of neurons depending on the
color axes they define. In the discussion section we estimate the
main color axes that emerge from this trained net and we propose
an index for color-selectivity of a neuron.

Inversion of the neuron activation
A Convolutional Neural Network is defined as several

stacked layers operating on their inputs to produce a represen-
tation change, thus each layer yields a new level in the encoding
process. Layers parameters are learned using the backpropaga-
tion algorithm, that search for a solution that minimizes a loss
function that depends on the visual task the network is trained for.
Mainly, two types of layers are used: convolutional and pooling.
The main responsible layers on the encoding process are the con-
volutional ones, which apply a convolution operator between the
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input image representation and the set of filters of the layer try-
ing to extract specific information from images. More explicitly,
with this operation the image locations where the filter template
best matches are highly activated. A CNN learns to match fil-
ter shapes with image structures which are important for the goal
task. As layers are stacked, each filter shape is expressed in terms
of the previous layer: each neuron is specialized through connec-
tions with other cells of the previous layer. This interpretation of
the process also support with the fact that the filter bank of the
first convolutional layer is easily understood compared to the rest.
The pooling layers are devoted to reduce the image size to intro-
duce some tolerance to spatial shifts and increasing the number
of a spatial features at different scales. To sum up, each neu-
ron at every layer is specialized in encoding specific image parts
depending on the previous layers. Understanding how a CNN en-
codes image information to achieve such remarkable results is a
focus of attention in computer vision [1, 2, 6, 18, 15, 17] that is
not solved yet.

In this work, to explore the activation of a neuron to a given
input pattern we will work on a decoded version of the neuron fil-
ter. A decoded filter should be a projection of the neuron activity
towards the image space. The convolution of an input image with
a decoded filter should give an activation similar to the net activa-
tion. It should be computed by the network inversion. However,
polling is not invertible, and convolution with a kernel is linear
but not all kernels can be inverted. Therefore, both operations do
not allow to compute the perfect inverse network. Consequently,
we build an estimation of this decoded filter by making some spe-
cific assumptions on the lost information. We will denote the ith
neuron of a specific layer L, as nL,i, which is initialized with its
corresponding filter, FL,i at level L. In what follows we explain
the decoding process in two separate parts: convolution and pool-
ing. The estimation of the neuron inversion will be iteratively
computed from layer L through all intermediate layers l, this is
denoted as n̂L,l,i, ending at layer 1, which represents the image
space.

Inversion of Convolutional Layers: Inverting the encoding of
a convolutional layer was firstly approached by Kavukcuoglu et
al. [9] and afterwards, the stacking of several layers was per-
formed in [19]. In both works, this inversion is approximated by
the convolution with the transposed filter, which is called decon-
volution. We project a neuron onto an inferior layer by decon-
volving it with the set of filters of the neurons it is connected to.
This step is different from what is done in [18], where the authors
back the feature activities in intermediate levels to the input pixel
space through the deconvolution. We map the filter pattern to the
input pixel space. By doing this, instead of analyzing the image
appearance that highly activates the neuron at a certain layer, we
will focus on the properties of the built filter that can help in un-
derstanding the intrinsic neuron activation. The inversion of the
convolutional layer is computed as:

{n̂L,l,i)
j } j=1..cl = {

sl

∑
k=1

n̂L,l+1,i
k ∗ f l,k

j } j=1..cl (1)

where sl denotes the number of filters of the layer l, cl the
number of channels of these filters, n̂L,l+1,i

k is the kth channel of

the estimated mapping of the neuron we are exploring, nL,i, at
layer l + 1, and f l,k

j is de jth transposed channel of the kth filter
FL,k. The symbol ∗ denotes the convolution operation.

Inversion of Pooling layers: Inverting pooling layers is not
possible, they reduce the image size usually with a max pool-
ing operation performed on a neighborhood region to keep the
strongest activations in this zone. These layers simplify the infor-
mation by capturing what is most relevant in the area tolerating
small spatial shifts. One way to approximate the inversion is to
preserve the specific location where the maximum values of the
activations came from [20], this is useful to recover the interme-
diate feature activities which are dependent of the image. Since
we are recovering the filter itself without consider the activations
of the images, this inversion can be approximate by a simple up-
sampling of the representation, then we define the unpooling op-
eration as:

Φ(n̂L,l+1,i
k ) (2)

where Φ denotes the image upsampling function that recov-
ers the previous size of the representation considering the layer
parameters. The loss of information is recovered by an interpola-
tion method.

Other types of layers such as the Rectified-Linear Units
(ReLU) layers are not considered in the inversion process of fil-
ters. These layers are usually devoted to inhibit negative re-
sponses of image activations. Taking into account that filters have
been learned without these negative responses, inverting them
would imply to insert information that did not participate in the
training process.

Finally, we want to point out about the stride parameter. It
has an important effect on the inverted shapes, since it is related
to the spatial relationship between pixels. It introduces more er-
rors in the inversion process of both, convolution and pooling. To
deal with it we estimate its effect by a direct upsampling of the
representation previous to any inversion process.

The results of applying the method explained in this section
can be seen in figure 1. We can observe the decoded estimation
of the neurons at different 5 convolutional layers of the CNN we
study in this work. Its architecture is given in table 1 and it is
explained with more details in the results section.

Extracting layer color axes
In this section we explore the decoded filters we have ob-

tained above. As we can observe in figure 1, the appearance of
the filters presents a huge variety both in shape and color. In this
work we try to approach the understanding of color representa-
tion in CNNs through the analysis of these decoded filters. This
exploration is a hard task, considering the amount of filters and
their variety. We have observed an important correlation between
the color of these filters and the color of their maximum activation
images. This correlation is specially important in the first layers
of the network. Following this idea, we explore the color axis rep-
resented by each filter and based on these axes, we will estimate
the main color axis of each layer.

To this end, we perform a classification according to their
color properties, which we use to get subsets of different decoded
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conv1 conv2 conv3 conv4 conv5

Figure 1: Some examples of decoded filters (DF) approximated for five convolutional layers of CNN-M net.

filters sharing some properties and be able to search for those fil-
ters that define the color space for each layer. The analysis is done
on the following opponent-color space, based on [11] but with all
axes ranges compressed between -1 and 1 values:

O1 = (R+G+B−1.5)/1.5,
O2 = (R−G),
O3 = (R+G−2×B)/2

(3)

First, we classify the neurons considering their color correla-
tion with a linear axis. We use the Principal Component Analysis
method (PCA) to obtain the main axis that fits the color distri-
bution. The line of the axis is given by the eigenvector direction
with highest eigenvalue and the point given by the color mean.
Depending on the dispersion of these color pixels in the space,
we separate between linearly correlated filters (called aligned)
against dispersed filters. In fact, color pixels of linearly corre-
lated neurons can be expressed by the colored-axis obtained by
this regression. This classification arises from the observation that
aligned filters present an strong spatial correlation between chan-
nels, and consequently simpler spatial shapes. While non-aligned
filters present complex shapes which are difficult to understand
from the decoded filter.

Second, once aligned filters are found, we analyze the color
variability of these aligned decoded filters in terms of the amount
of color name labels that can be assigned. To this end we have
applied the parametric model for the universal terms developed
by Benavente et al in [3]. It categorizes each color pixel in one
of the 11 basic colors defined by Berlin and Kay [4]: red, or-
ange, brown, yellow, green, blue, purple, pink, black, gray and
white. In this way, neurons can be classified as single-color neu-
rons the ones which are categorized with one color, double-color
neurons having two colors and we also consider multiple-color
neurons when they presents a higher number of colors. In other
hand, aligned neurons are also classified according to their color
axis position in the opponent color space. Centered neurons are
those whose axes cross the origin of the color space, and shifted
neurons, those whose axes are away from the origin.

Given the previous classification, we finally focus on one of
the classes, which is the one of double-color neurons, having a
centered aligned axis. This specific subset is, somehow, defining
the color space at the corresponding layer. From that point, we
are able to select the main color axis for each layer: we project
each color axis to the chromaticity plane RG-BY by subtracting
intensity information of the double-color projected neuron axis

and we analyze their distribution along this plane. Specifically,
we consider the angle between their axes and the RG axis of the
color space. This distribution is modeled through an expectation-
maximization algorithm (EM) to find the mixture of gaussians that
fits them. With this procedure, we obtain the color axis of each
layer as the ones defined by the mean of each component distri-
bution.

To sum up, we propose a neuron categorization process in
order to get a subset of decoded filters that allow to explore rel-
evant color directions of the layer. With the EM model we are
able to extract the axes of the color space that emerge from these
neurons.

Analyzing CNN color selectivity
Once we have extracted relevant axes of net layers, which

were derived from decoded filters, another interesting point is
the study of individual neuron selectivity to a particular prop-
erty. Several research studies on Convolutional Neural Networks
have demonstrated that internal neurons are selective to a par-
ticular appearance of the object, or object style, viewpoint, etc.
[15, 23, 18, 17, 1, 2]. In this section, we focus on the study
of color selectivity of the neurons, trying to answer the question
about how important is color selectivity in these architectures.

In order to do this, we apply an unsupervised classification
method to analyze the color selectivity of a neuron from the study
of the image parts having maximum activations. This process
should give us the number of different colors that appear in these
top images. We consider that a neuron is color selective if it is
activated by images presenting a subset of specific predominant
colors. Heretofore, we analyze the colors of the t top activations
for each neuron in a random subset of the dataset.

Following this idea, we need to characterize the color of the
image patches corresponding to a high activation of a certain neu-
ron. Since we need a global color description, we will use the
labels of a color naming approach [3]. Each pixel is transformed
into a 11-dimensional space from its color probabilities to belong
to a certain basic color. We build our wide-range description of
this cropped image by clustering the set of pixels in k categories
using the k-means method onto the 11D space. The obtained cen-
troids will allow to obtain compound color categories that capture
more than eleven labels but preserving a global description of the
image colors. In this way, each cropped image can be described
by the histogram of the labels defining its predominant colors,
this is the probability of finding a pixel with a specific label in the
image.
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(a) (b) (c) (d) (e)

Figure 2: Color axes emerging from the convolutional layers of the explored CNN. (a) 3 color axes in conv1. (b) anc (c) 4 color axes in
conv2 and conv3, respectively. (d) and (e) 5 color axes in conv4 and conv5, respectively. For each convolutional layer, the first row is the
distribution of double-color neurons for each chromaticity angle on an opponent space (RG-BY), gray bars correspond to the number of
neurons, in red the estimated Gaussian mixtures modeling the emerging color axes. Second row, are the chromaticity axes corresponding
to the estimated means of the mixture model provided given by the EM algorithm.

conv1 conv2 conv3 conv4 conv5 full6 full7 full8
96x7x7 256x5x5 512x3x3 512x3x3 512x3x3 4096 4096 1000

st. 2, pad. 0 st. 2, pad. 1 st. 1, pad. 1 st. 1, pad. 1 st. 1, pad. 1 dropout dropout softmax
LRN, x2 pool LRN, x2 pool x2 pool

Table 1: CNN-M architecture designed by Chatfield et al. in [6]. We use their notation, where M×N×P corresponds to number of
filters, number of rows and number of columns of the filters respectively. St. and pad. refers to stride and padding respectively; LRN is a
Relu and the corresponding pooling (pool) if applied.

To quantify the color selectivity of a neuron we will use the
descriptors computed on the t top activation images. We will com-
bine the histograms of labels of the t images, that is denoted as h.
It is representing the probability of finding a pixel with a specific
label in the t images. A neuron with high index of color selectiv-
ity will concentrate most of the pixels on a small subset of labels,
on the contrary, a neuron with low index of color selectivity will
present a flat histogram with pixels in all the bins or labels.

We define the index of color selectivity index of a neuron,
Sp, as the ratio of pixels contained by the p bins with highest
probabilities, given by

Sp(nL,i) =
∑

p
m=1 hm(nL,i)

p
(4)

where hm is the mth maximum of the histogram descriptor h.

Results and discussion
In this paper we analyze the neurons of a CNN architecture

trained on ImageNet ILSVRC dataset [12] for a generic visual
task of object recognition, which contains around 1.2M of images
classified in 1.000 categories. We use the CNN trained by Chat-
field et al. in [6], where was referred as a medium net (CNN-M).
Its architecture is summarized in table 1. This network is of note
due to a similar net shows a good representational performance
when is compared to human one [5].

In this section we perform two experiments on the CNN-M
network, but we only focus on its convolutional layers without

considering the last fully connected layers. First, we study the
color axes in each convolutional layer using the process explained
in the color axes section, and second, we compute the index of
color selectivity for all the neurons in convolutional layers fol-
lowing the method shown in the color selectivity section.

Figure 1 shows a subsset of neuron projections obtained as
explained in the inversion section in the different convolutional
layers. From these projections, we can observe that decoded
filters present simpler shapes in early layers, so complexity of
shapes is increasing through layers and is more difficult to in-
terpret these shapes in deeper layers. Let us denote as early lay-
ers the first layers of the network, while deeper layers refer to
the last ones. Moreover, early layers present more separation be-
tween colors and black-white neurons. Nevertheless, we have to
consider that the process of projecting each neuron accumulates
errors through layers.

The aim of the first experiment is to analyze the color spaces
that emerge from this deep convolutional network. These color
spaces are defined by the set of axes of the aligned, centered and
double-color neurons. Table 2 illustrates the results of our classifi-
cation for conv2. Aligned filters show simpler spatial shapes com-
pared with the dispersed ones. As we explained in the color axes
section we use the EM Gaussian mixture model to get the prin-
cipal color axis that this specific subset of neurons are defining.
Note that this clustering algorithm is done from the chromaticity
angle on the opponent space (RG-BY), and there are only angles
between 0 and 180 degrees. This fact implies to fit our data in
a kind of circular space. For this reason, we successively shift
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Aligned
Dispersed

Centered Axes Shifted Axes
Single-color

Double-color

Table 2: Classification of neurons in conv2 layer of the CNN-M. Neurons are classified in 4 different classes, depending on their linear
correlation and their number of appearing colors.

the last bin into the first position of the histogram and evaluate
the EM algorithm by the AIC measure to choose the best one.
We also consider different possible number of classes (from 3 to
10) and again AIC is used to get the final fitting. Figure 2 shows
the probability of double-color neurons along the RG axes in all
of the convolutional layers studied in this paper. Surprisingly, in
the first layer emerges a color space with 3 color axes. It is im-
portant to clarify that black and white axis is not considered in
this study, so that first convolutional layer is somehow defining a
4-D color space: black-white, red-cyan, magenta-green and blue-
yellow. This result can be related with the controversial debate
of the existence of this third color channel also exposed in [21].
From the second convolutional layer a 5D color space emerges,
adding a red-green layer compared to the color space emerged in
conv1. In the same figure, we can observe that as we go deeper
in the layers, the neuron color axes are covering a larger range of
hues. Nevertheless, we have to specify that white and black axes
disappear from conv3. Moreover, from this results we can observe
that most neurons tend to be expressed in reddish-greenish terms.

Finally, our second experiment determines the index of color
selectivity through the different convolutional layers. Each neu-
ron is studied from the 9th top activation images which pro-
voke a high activation of that neuron (t = 9). We apply the
methodology explained in the color selectivity section to ana-
lyze the degree of selectivity of each layer. In figure 3 we plot
the percentage of neurons for each convolutional layer that has
a greater index of color selectivity value than a threshold (th =
0.30,0.40,0.50,0.60,0.70) fixing p = 3. This graphic shows that
color selectivity clearly decreases as layer is deeper in the archi-
tecture. This fact implies that CNN is more color invariance as we
go deeper in the net, as expected. Another interesting observation
on these results, is that the highest decrement of selectivity neu-
rons is done between conv2 and conv3, where there are no more
black-white neurons.

Figure 3: Color selectivity behavior through the different convo-
lutional layers of the analyzed CNN. This plot compares the per-
centage of neurons per layer that have an index selectivity greater
than a fixed threshold.

Conclusion

In this paper we have explored how color is represented in a
Convolutional Neural Networks from a projected version of each
neuron. As a result we conclude that 3 chromaticity axes emerge
in the first layer, instead of the classical Red-Green and Blue-
Yellow. We also can state that as we go deeper in the hierarchy,
estimated axes in the first two layers try to equally cover the full
hue space, with the 3rd layer a major concentration on one specific
axis is emerging, which in decoded filters is more aligned with a
Red-Green axis. A Black and White color axis is defined in the
first two layers, and a bit in the 3rd; but deeper layers have no
specific black-white neuron. Finally, we also observe that color
selectivity is an important feature in the first convolutional layers
but it is decreasing through layers, this is an obvious conclusion
since the decrease in selectivity must be accompanied by an in-
crease in invariance that is a must for a good behavior of the net.
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Mathematics from Universitat Autònoma de Barcelona, in 2012. She
received her M.S. degree in Computer Science and Artificial Intelligence
in 2013. Currently is a Ph.D. Candidate in the Computer Vision Center
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