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Abstract 
Metrics for describing the color rendering characteristics of 

light sources are based on CIE standard observers. However, the 
range of natural variation in color sensitivity over people with 
normal color vision means any individual may see something 
different than the standard observer. Modeling results quantify the 
effects of these inter-observer differences on color rendering metrics 
CIE 13.3 (CRI) and IES TM-30-15. Inter-observer differences are 
smallest at high color fidelity values and generally larger for light 
source spectra with steep transitions and narrow peaks. 

Background 
Advancements in lighting technology, coupled with better 

understanding of the human visual system and population 
distributions, mean we have both the opportunity and need to 
describe color in our built environments in more nuanced ways.  

Inter-Observer Variability 
Colorimetry has functioned successfully for nearly a century 

using sets of color matching functions designed to represent the 
visual sensitivity of an average human observer. As with any 
statistical average, the mean functions do not necessarily represent 
any individual observer. Within any given population of people with 
normal color vision (i.e., excluding color vision deficiencies), there 
is a natural range in spectral sensitivities caused by variations in 
cone spectral absorptivity, ocular media density, and other 
anatomical and physiological parameters. Some of these variations 
are age dependent, others are genetic, and some have other causes 
such as diet or environment.  

 

 
Figure 1: A population of 1000 color matching functions derived from the 
individual colorimetric observer model (colored lines) for a visual field of 
10 degrees and an age distribution based on United States census data. 
Also shown is the CIE 1964 10-degree standard observer (black).  

Recently, Asano et al. created an individual colorimetric 
observer model that takes into account the natural distributions of 
anatomical and physiological features such as physical densities of 
ocular components and wavelength and density shifts of cone 
photopigments based on age, size of visual field, and random 
population variability [1]. Using Monte Carlo simulations, their 
model is able to create populations of individual color matching 
functions (CMFs) with any given set of parameters (e.g. age, field 
size, genetic markers, etc.). These populations of observers have 
been verified using population statistics and on an individual basis 
by predicting observed experimental color matches. Such 
populations of observers, represented by collections of individual 
color matching functions, are used to analyze color rendition metrics 
for lighting to see if individual differences might impact consumer 
satisfaction with selected light sources. 

Color Rendering of Light Sources 
The spectral characteristics of an illuminant have an obvious 

and direct effect on the reflected spectral power distribution of 
objects being illuminated. Experience tells us that broad-spectrum 
light sources such as daylight appear to render object colors in a 
natural way. This can be contrasted with narrow-band light sources 
such as sodium vapor lamps, which render object colors very poorly 
by not giving our eyes enough spectral content to allow good color 
discrimination. In lighting, efficacy is often at odds with color 
rendering, motivating the development of metrics that can be used 
to describe color rendering characteristics and allow specifiers and 
consumers to make informed decisions. 

There have been a variety of color rendering metrics proposed, 
especially since the development of fluorescent light sources. The 
legacy industry standard is the CIE 13.3 color rendering index 
(CRI), which provides a summary number (Ra) describing the 
average accuracy in color saturation over a small set of standard 
colors, relative to a reference light source of the same correlated 
color temperature (CCT) [2]. CRI Ra was created in part to quantify 
the disappointment people found in the color rendering of 
fluorescent lighting. In some cases, norms have followed, for 
example requiring a certain minimum CRI (e.g. CRI Ra 80 for 
offices in Europe), and manufacturers responded by producing 
products tuned to meet the Ra values the market demanded.  

Analogously to how fluorescent lighting spurred CRI, LED 
lighting, with the variety of spectral power distributions the 
technology can provide, has led to the development of newer 
metrics. The Illuminating Engineering Society (IES) has published 
a new standard for North America, commonly known as TM-30-15 
(TM30, herein) [3]. TM30 builds on CRI, adds additional metrics 
beyond color accuracy, and attempts to address a variety of 
criticisms of the legacy metric. IES provides an Excel spreadsheet 
that performs the computations described in the TM30 document. 
The application of TM30 to a test light source includes these steps:  
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• Determine the CCT of the test source using a standard 2-
degree observer. 

• Define a reference source of the same CCT that is 
Planckian if below 4500K, using the CIE daylight model if 
above 5500K, and a linear mix in between. 

• Compute the coordinates of 99 spectral color evaluation 
samples (CES) in CIECAM02 UCS using a standard 10-
degree observer for both test and reference light sources. 

• Compute the color difference as a Euclidean distance in 
CIECAM02 UCS, and report a fidelity metric Rf based on 
the mean color difference. 

• Compute a polygon in the opponent-color (a,b) plane of 
CIECAM02 UCS based on binned hues of the 99 CES for 
both test and reference sources, and report a gamut Rg 
based on the ratio between the areas of the test and 
reference polygons. 

• Provide bar charts of hue-binned fidelity and relative 
saturation along with a hue-circle distortion graphic. 

 
Figure 2: Example TM30-style graphics for an RGB LED light source. UL 
shows the SPDs of test (red) and reference (black) sources; UR displays 
gamut metric Rg versus fidelity metric Rf; LL bar charts show Rf and 
relative chroma per hue bin; and LR color vector graph shows color shifts 
of the normalized circular reference (black) to the test source (red). 

Part of TM30’s message is that a single metric or even a short 
list of numbers is not enough to adequately describe the color 
rendering characteristics of light sources, hence its heavy use of 
plots and graphics. Examples of these for a single light source are 
shown in Figure 2. Importantly, TM30 is not a quality or preference 
metric, but of course trends in Rf, Rg, and the enhancement and 
diminishment of color saturation in different parts of the hue circle 
have been shown to correlate with preference, depending on context 
[4][5]. If the variability among observers moves or blurs the points 

of these metrics, that could lead to disappointment or increased cost. 
With that in mind, we modeled individual observer dependencies. 

Modeling 
A Matlab implementation of the TM30 metrics was written, 

based on the IES’ TM30 document and related Excel spreadsheet. 
This re-implementation was necessary to allow the flexibility to 
vary the color matching functions (and thus diverge from IES’ 
recommendation). The 10-degree CMFs used in the computation of 
CIECAM02 UCS values for both test and reference sources were 
exposed so that the individual colorimetric observers could be used. 
Similarly, the computation for CRI was modified to accept 
individual colorimetric observers in place of the 2-degree standard. 
Note that both CRI and TM30 use CIE 1931 2-degree CMFs to 
calculate CCT and define the reference source, and this was 
unchanged in the present model. Thus, the simulation is of real-
world populations of observers assessing the comparison of test and 
reference illuminants (selected in the standard way), and potentially 
seeing differences thanks to their individual sensitivities. 

In the present work, we simulated two different populations. A 
first population of 1,000 observers was computed using an age 
distribution taken from the most recent (2010) U.S. census, which is 
a wide distribution with a mean age of 39.9 years and standard 
deviation of 17.2. This sampling is as described by Asano et al. [1]. 
Both 2- and 10-degree sensitivities were simulated for the 
population. The populations’ 10-degree CMFs are all shown in 
Figure 1 along with the CIE 1964 standard observer.  

Second, because age is one of many drivers of individual 
differences, and one of the few that may be practically addressed in 
the market, another observer population was generated similarly. 
This second population includes 500 observers of age 25 years and 
500 observers of age 65 years, and their 10-degree CMFs can be 
seen in Figure 3. With the younger observers plotted in transparent 
red and the older in transparent blue, biases are clearest at short 
wavelengths, while in other areas they blend together as purple.  

 

 
Figure 3: A population of color matching functions derived from the 
individual colorimetric observer model for two age subgroups of 500 
observers each: 25 years (red) and 65 years  (blue). Also shown is the 
CIE 1964 10-degree standard observer (black).  
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A variety of real light sources was selected to cover new and 
old technologies and differing spectral characteristics, including 
both broadband and mixed narrowband SPDs. These eight are listed 
in Table 1 and shown in Figure 4. 

Table 1: List of selected light sources used in the model, showing their 
correlated color temperature (CCT), CIE CRI (Ra), and IES TM-30-15 Rf 
and Rg values.  

 Source Type CCT Ra  Rf Rg 
A Tungsten 2812 100 100 100 
B CIE D5500K 5500 100 100 100 
C Blue-pump LED 2732 97 95 103 
D RGB LED 3304 80 74 89 
E Blue-pump LED 2 3815 65 60 97 
F RGB LED 2 3388 38 58 108 
G Triphosphor Fluoro 3003 86 80 106 
H High Pressure Na 1923 15 29 61 
 

 
Figure 4: Relative spectral power distributions of selected light sources 
used in the model. Letter labels correspond to Table 1 and results: A is 
tungsten; B is CIE Daylight 5500K; C and E are different blue-pump 
phosphor LEDs; D and F are different RGB LEDs; G is triphosphor 
fluorescent; and H is high pressure sodium. 

Results 
The modeling results show how the natural variations in an 

observer population manifest themselves in terms of color rendering 
metrics. Looking first at the variation present in the first population, 
simulating the age distribution from the US census, we can see what 
degree of variation can be expected in the US population. In the 
TM30 Rg vs. Rf plot in Figure 5, clouds of points in red show the 
(Rf, Rg) values computed for the simulated observer population. 

The clouds illustrate the variation and relative density surrounding 
the labeled black points, which are the TM30 values computed using 
the CIE 1964 10-degree standard observer. As a general trend, the 
clouds are smaller near the Rf=100 cusp, but their orientations and 
extents are not consistently patterned. Some (D, E, H) are essentially 
elliptical with various orientations, while others (C, F) appear to 
have an underlying “curl” to their shape. Results for the highest-Rf 
light sources (A, B) are essentially pinpoint, their extent exaggerated 
by the red plotted spot.  

 

 
Figure 5: TM30 Rg vs. Rf plot showing clouds of points for each of the 
eight light sources due to modeled variability in observer color sensitivity. 
The labeled dots indicate the (Rf, Rg) values computed with the CIE 
1964 standard observer. The gray regions of the plot are impossible 
because maximum fidelity (100) implies no change in gamut (100).   

 
Figure 6: Histograms of the IES TM-30-15 Rf and legacy CIE CRI Ra 
values for each of the eight light sources. Visible distributions result from 
the differences among the individual colorimetric observers. Note that A 
and B have very narrow distributions in both metrics, close to 100. 

Histogram distributions of TM30 Rf values and CIE Ra results 
computed for the individual colorimetric observers are shown in 
Figure 6. Admittedly, Rf and Ra are somewhat like apples and 
oranges, but comparing them is an obvious cross-check. Both 
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metrics show almost no variation for light sources A and B because 
they are spectrally nearly identical to their respective references. 
Interestingly, the new metric (Rf) shows narrower distributions than 
Ra for the remaining six light sources, with standard deviations 
ranging two to three times smaller.   

TM30 emphasizes the use of color vector graphics, which 
indicate the distortion of binned hues in hue and saturation relative 
to the reference light source. Figure 7 shows color vector plots 
showing the relative distortion of four of the sources. In this graphic, 
the overall distortion due to the source is seen as the difference in 
shape between the shaded reference circle and the black polygon 
(computed using the CIE 1964 10-degree standard observer). The 
red polygons indicate the variation due to observer differences, 
which in some cases, like source F, is also hue dependent. 

 

 
Figure 7: TM30 color vector graphics showing the relative distortion of 
hue and saturation in a normalized CIECAM02 UCS a’b’ plane for four 
light sources. The resulting distortion using the standard observer is the 
difference between the shaded circle and the black polygon, highlighted 
with black vectors for each of 16 hue bins. Red polygons indicate the 
range of distortions seen by each of the individual colorimetric observers. 

Turning to the second population with two different age 
subgroups, modeling results show distinct differences for some light 
sources. Figure 8 shows the TM30 Rg vs. Rf values computed for 
each of these ages, the younger group plotted in red and the older 
group plotted in blue. Where they largely overlap the clouds appear 
purple. Several of the sources in the figure show substantial 
disparities due to age, most notably D and F, the two RGB LED 
sources, and H, high pressure sodium. An interesting comparison 
can be seen with light sources E and F: younger observers would see 
the Rf of these sources very similar on average. However, the older 
observers would see an Rf difference of 5+ units. The older group 
would also see a larger apparent difference in Rg for these sources. 
In such a case, the equivalence of light sources’ behavior, or 
sufficiency for Rf-based standards, would be directly affected by 
characteristics of different observer groups. 

 
Figure 8: TM30 Rg vs. Rf plot for the different age populations. The 25 
year old observers are plotted in red and 65 year old observers in blue. 
The biggest apparent differences due to observer age are seen in H 
(high pressure sodium), and D and F (both RGB LEDs). 

Discussion 
The present modeling results show how observer variability 

directly affects metrics used to describe color rendering. This 
reinforces the idea that while CIE standard observers provide a good 
indication of the mean of the population, they do not give any 
indication of the natural variation among individuals. One 
implication of this, for color rendering, is that the variability to be 
expected among people is in some cases greater than the nuanced 
differences between different light sources and technologies. In 
other words, based on the observed variations small differences (<5 
units) in Rf or Rg might be “within the noise” and not meaningful.  

Larger Differences for Lower Fidelity Sources 
The highest fidelity light sources (approaching the maximum 

TM30 Rf value of 100) show the least susceptibility to inter-
observer differences. Approaching this limit, light sources close to 
this Rf = 100 cusp are so spectrally similar to, and render color so 
similarly to, their reference sources that no individual observer sees 
the difference. Further from the cusp, the potential for observer 
differences increases. With larger rendering differences between 
sources and their references, the spectral details become important 
and mean individuals will see different things. Also, because Rg and 
Rf are not perceptually scaled to one another and may additionally 
be perceptually nonlinear, it is probably not appropriate to compare 
variation between the two axes. 

Larger Differences for Narrowband Source Spectra 
There appears a trend that differences between observers’ 

responses to spectral power distributions are greater when the SPDs 
have steep transitions, narrow peaks, and/or little energy at some or 
many wavelengths. This is plainly manifested in the modeling 
results, where the clouds surrounding sources C-H are increasingly 
larger. The variability difference between D and F is quite large, and 
is surprising given overt similarity between their SPDs (and hinting 
at the importance of peak wavelength and minimum energy).  
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Variability in Ra and Rf 
It would be a stretch to make a sweeping generalization based 

on limited modeling, but in the present investigation it was observed 
that inter-observer variability has a larger effect on CIE CRI Ra than 
on TM30 Rf. That being said, TM30’s very existence is built upon 
the need for a more descriptive set of metrics than CRI ever offered. 
So while the standard deviations of Rf values are smaller than Ra 
values, the Rf values must be considered along with the Rg values 
and other information. Variability clouds for Rf and Rg apparently 
covary for most light sources as well, though they are not 
consistently elliptical, nor is there is an obvious pattern to their 
orientations. 

Age Dependence 
The age dependence visible in the modeling results is based on 

extremes, comparing 25 and 65 year old subgroups. It is expected 
that smaller age differences would correspond to smaller effects. 
Beyond the well-known age-dependent difference in visual 
sensitivity to short wavelengths, what is new in the present result is 
more clarity about how such sensitivity differences translate to color 
rendering differences. For some light sources, the differences in 
observed Rf and Rg values is quite large, and in some cases the older 
subgroup would see differences that the younger group would not. 

Observer Metamerism Index 
Quantifying the color rendering characteristics of light sources 

remains a tricky topic, and the IES has produced a rich toolset that 
continues to affect discussion throughout the industry. At the risk of 
complicating this discussion further, it would be interesting to 
consider a new kind of index that describes the susceptibility to or 
likelihood of inter-observer variability in color rendering. This 
could be based on simulation results as presented here, or perhaps 
modeled based on the correspondence of steep transitions to the 
regions of highest variability in color matching functions.  

As scientific understanding of the natural variation in color 
sensitivity improves, reducing inter-observer variability may join 
the long list of goals that lighting manufacturers continue to try to 
optimize. An observer metamerism index could serve this goal. 
Additionally, illustrative statistics such as the expected covariance 
matrices for Rf and Rg over an observer population would enable 
uncertainty to be indicated in Rg vs. Rf plots and bar charts. Future 
work is suggested to create and validate a summary observer 
metamerism index for light sources. 

Conclusion 
Assessing the color rendering properties of light sources is a 

complicated matter that depends on the source SPD, the geometry 
of illumination, the colors evaluated, and as shown here the 
individual observer. Thus, it is not surprising that metrics designed 
to quantify the color rendition of light sources need to be more 
complex than the single number of CIE CRI Ra or even the two 
numbers and graphical tools of IES TM30. It has been shown that 
observer variability in color matching functions is real and 
predictable, and it can be used to compute the range of color 
rendition metrics in CRI and TM30 in a meaningful way. 

Modeling results show a general trend with Rf and Ra such that 
light sources with a high color fidelity (high Rf and/or Ra) also show 
relatively little individual variation. Sources with lower fidelity 

show significantly more variation. This is somewhat to be expected 
since high fidelity sources tend to be spectrally similar to the 
reference light sources with continuous spectra that might help to 
minimize individual variation.  

Examination of the simulated results indicates that the clouds 
of observer variation span distances in the Rg vs. Rf plot as large as 
the distances between some of the evaluated light sources. This 
suggests that users of TM30 should perhaps ignore differences 
smaller than the sizes of these clouds: five to ten units of Rf over 
much of the plot, slightly less at high Rf, and slightly more at low 
Rf. In addition, analysis of populations of different ages indicates 
that age dependency in the color rendition metrics is quite large, 
more than ten units of Rf in the lower Rf range. 

As awareness of observer variation increases, further study of 
additional metrics is recommended to describe the variation in real 
populations of observers for different light source types.  
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