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Abstract
Color correction is often posed as a linear regression

problem either from camera RGB to XYZ - where the aim
is use a camera for color measurement - or to a display
color space such as sRGB for image reproduction. While
linear regression is simple and also ensures exposure in-
dependence, the mapping found through regressing RGB to
XYZ is not optimal in terms of perceived color.

In this paper, we begin by observing that the best lin-
ear transform for mapping RGB to XYZ to minimize a color
difference metric, such as CIE LAB, is not separable. In
particular we show that the best fitted Y channel should be
different depending on whether L*, a* or b* error is mini-
mized. Consequently, we develop an extended linear regres-
sion framework for CIE LAB where we solve for Y - we map
RGB onto Y - three times - once for L*, once for a* and
once for b*. As in conventional regression we solve for X
and Z only once.

Experiments demonstrate that compared to our new ex-
tended linear regression method the mean, 95% quantile
and CIE LAB error afforded by simple linear least-squares
is respectively 30%, 50% and 70% larger. Extended linear
regression delivers leading color correction performance
with fewer parameters than competing methods.

Introduction

Camera sensors do not sample light like our own vi-
sual system. Not only are the spectral sensitivities of the
R, G and B sensors different from our own cone sensors
they are not linearly related, they do not meet the Luther
conditions[15]. In direct consequence, there are colors that
we see as the same that look different to the camera and vice
versa. Metamerism is a real problem, so a camera cannot be
used as an exact proxy for our own visual system.

There is however a practical and sustained research inter-
est in color correcting measurements made by a camera to
corresponding human visual system referred color coordi-
nates. Examples of targets for color correction include cone
responses[7], XYZ color triplets, e.g. [25], and perceptual
coordinates such as CIE LAB, e.g. [4]. In computer vision,
color correction is a key component of systems that seek to
replicate the color visual judgements made by human ob-
servers, e.g. [5, 6]. Color correction for image reproduction
involves mapping the RGBs measured by the cameras to the
corresponding RGB coordinates that drive a display[2] or,
in the case of hard copy, drive a printer. In image repro-
duction we aim to make the displayed image a facsimile of
the scene as we ourselves would see it (with the caveat that

preference is also an important factor[22]).
Abstractly, the goal of all color correction algorithms is

to map colors from one 3-dimensional coordinate frame to
another. Here, we will consider how an (R,G,B) triplet,
ρ is mapped to the corresponding (X,Y, Z) coordinate, x,
and how this in turn is mapped to the CIE LAB [28] triplet:
(L∗, a∗, b∗), denoted L. The CIE LAB color space has the
property that the Euclidean distance between Lab triplets -
called CIE LAB Delta E, or ∆E - correlates tolerably with
perceived color difference[28].

The color correction problem is often simply formulated
as finding the best least-squares 3 × 3 matrix M that maps
a camera RGB ρ to its corresponding XYZ, x [10, 26]:

x̂ = Mρ ≈ x (1)

There is a focus on linear color correction, in part, be-
cause if M delivers good color correction for a given RGB
ρ it continues to perform well when exposure changes and
ρ → kρ (e.g. k = 0.5 when the exposure time is halved).
Further linear color correction is an easy problem to solve
(see the background section) in that we can find the correc-
tion matrix in closed form and with with little training data.

In the top row of Figure 1 we show, left, an input raw
image with the corresponding sRGB output, right. These
images are created through numerical integration. The un-
derlying reflectance image is drawn from the Foster and
Nascimento spectral image database[12], the illuminant is
approximately D75 (hence the bluish cast in the raw image)
and the camera spectral sensitivities were randomly selected
from the 28 sensitivity sets in the RIT spectral sensitivity
dataset [16] (a Point Grey camera was used). In panel d)
we show the output of a least-squares calibration. The re-
sults are rather good drawing attention to the fact that sim-
ple linear color correction often works well. We zoom in on
the region delimited by the white square in 2a). The corre-
sponding crop for the least-squares correction is shown in
2b).

In Figure 1c), we also show the CIE Delta E error map
for the difference between the least-squares fit image, 1d)
and the ground truth output 1b). Here the colors Blue and
Red respectively correspond to 0 and 20 Delta E (the in be-
tween colors linearly index Delta E, green is about 10). Sig-
nificantly, it is accepted that small Delta Es are not readily
perceptible in complex images and colors need to be repro-
duced with 3, 4 or 5 Delta E error to be noticeable[21, 23].

In this paper, we revisit linear color correction but add
the constraint that we wish not only to well map RGBs to
XYZs but also to find a good mapping with respect to the
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Figure 1. In a) a raw image (with a gamma of 0.5 applied to make
it appear brighter) is shown next to the rendered counterpart b).
Images d), f) and h) respectively show the output of a least-squares
regression, the extended least-squares method developed in this
paper and root-polynomial regression. Panels c), e) and f) show a
pseudo color representation of CIE Delta E fitting error for imaged
d), f) and h) compared with the ground truth b).

Figure 2. In a) we show the cropped region delimited by the white
square from the ground truth output in Figure 1b). In b) we show
the same crop for linear regression, the color is clearly a little in
error. Finally, c) shows the output of our extended linear regression
which has improved color fidelity.

CIE LAB color space. Our work begins with the follow-
ing thought experiment. Suppose, for some reason, we are
particularly interested in how well RGBs can be mapped to
predict the corresponding X coordinates. We might mathe-
matically implement this desire by by weighting the mini-
mization to, in effect, penalize the fitting error in X (more
than Y and Z). However, when we do this, it turns out that
we arrive at the same least-squares color correction matrix
M . This is true because linear least-squares is separable.
The 3 coefficients in the first row of M , in Equation 1, map
the RGB vector to the corresponding X coordinates. These
coefficients are independent of - and can be solved indepen-
dently from - those for predicting Y and Z.

If we wish to solve forM that minimizes CIE LAB color
error then this separability property no longer holds. In-
deed, in the CIE LAB formulae a∗ depends on both of the
X and Y coordinates and b∗ depends on both of the Y and
Z values. L* depends only on Y. These dependencies dic-
tate that the best linear regression formulated for CIE LAB
we should singularly approximate X and Z but we must
solve for Y three times (because L*, a* and b* all depend
on Y). Counting parameters, our new extended linear color
correction method has 5×3 = 15 terms which compares to
the 9 parameters in conventional color correction. However,
linearity and exposure invariance is preserved.

Later, we report on a variety of experiments using real
and synthetic data for many lights and cameras. In all cases
moving from a simple to extended linear formulation of
color correction delivers substantial benefits.

Background
Often the mapping from RGB to XYZ is posed as a sim-

ple linear regression problem where we seek the 3x3 cor-
rection matrix M that minimizes:

min
M
||MP − X|| (2)

where P and X respectively denote 3 × N camera RGB
and XYZ color measurements for N surfaces. In (2), ||.||
denotes the Frobenius norm (the square root of the sum of
squares). The best 3 × 3 matrix M is found in closed-form
using the Moore-Penrose inverse,

M = XPt[PPt]−1 (3)

One property this least-squares fit is separability. If we
are interested in the linear combination of RGB that best
approximates Xi (the ith the row of the XYZ response
matrix) then Mi (the ith row of M ) is simply equal to:
XiPt[PPt]−1. In mathematical optimization this kind of
separability is rare which is actually one of the reasons that
linear least-squares is so commonly used.

A linear color correction matrix can also be derived us-
ing arguments based on the physical dimensionality of the
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light and surfaces[18, 27, 19] or by adopting prior informa-
tion about the assumed covariance structures of color spec-
tral signals in the natural world[9]. Of direct relevance to
this paper, it is also possible to formulate a minimization to
find theM that minimizes error in a perceptually referenced
colorspace such as CIE LAB.

We, abstractly, denote the mapping from XYZ to CIE
LAB is is a vector function f : <3 → <3. So, we formulate
the linear regression problem to minimize Delta E error as:

min
M

ΣN
i=1||f(Mρ

i
)− f(xi)||2 (4)

where, respectively, ρ
i

and xi denote the ith columns of P
and X . The matrix M can be found through a gradient de-
scent type search[4] (local minimum) or Eq. (4) can, in a
colorspace sense, be locally linearised and a global mini-
mum found[8].

Another useful property of linear color correction for
photography applications is that it is independent of ex-
posure: if M optimally maps P to X then M also opti-
mally maps kP to kX where k is a scalar modelling bright-
ness change. When color correction does not scale with
brightness the same physical object color can be mapped
to significantly different image colors e.g. if the same sur-
face is viewed in a dark and light part of the same scene
the corresponding image colors can have different hue and
saturation. Further, the magnitude of the color shift can,
on occasion, be surprisingly large[11]. Exposure depen-
dent methods of color correction which includes polyno-
mial regression[14], lattice regression[13] and neural net
based methods[24] are not considered further in this paper.

Extensions to linear color correction which do scale
with intensity have been a recent focus of development in
color correction research. Andersen[1] divided chromatic-
ity, centered at the whitepoint into k unbounded triangular
regions. Per region, the chromaticities at the boundary and
the white-point uniquely defined a 3x3 correction matrix.
Further, by construction, the method implements a continu-
ous color mapping. The method is extended in [17] to allow
the bounding chromaticities to be chosen through optimiza-
tion. The idea of optimizing chromaticity and intensity sep-
arately is studied in [20] where the chromaticity mapping is
implemented as a general lookup-table. While polynomial
regression is not intensity preserving a variant, called root-
polynomial regression, was developed that does scale with
exposure[11].

Extended Linear Color Correction

In calculating CIE LAB, the XYZ values are first divided
by the XYZ for a white surface. The CIE LAB equation
is recapitulated in Equation (5) below however to ease the
notation, we assume that the XYZ coordinate has already

been divided by white (and so are numbers between 0 and
1).

 L∗

a∗

b∗

 =

 0 116 0
−500 500 0

0 200 −200

 γ(X)
γ(Y )
γ(Z)

−
 16

0
0


(5)

In Equation (5), the gamma function γ(), which is ap-
proximately the cube root power, maps the X, Y or Z to
brighter counterparts. Then the matrix mixes the XYZs in
generating (L∗, a∗, b∗) coordinates. There is a final offset
subtraction for L∗.

Let us suppose that we are only interested in a∗ error and
to minimize this error we have can choose a bespoke color
correction matrixMa. Because a∗ = 500γ(Y )−500γ(X),
it has no dependency on Z, so Ma has the form:

Ma =

 Ma
11 Ma

12 Ma
13

Ma
21 Ma

22 Ma
23

6 6 6

 (6)

where the symbol 6 indicates ’don’t care’ (since Z has no
bearing on the calculation for a∗). Analogous correction
matrices, M b and ML, for b* and L* are respectively de-
fined:

M b =

 6 6 6

M b
21 M b

22 M b
23

M b
31 M b

32 M b
33

 (7)

ML =

 6 6 6
ML

21 ML
22 ML

23

6 6 6

 (8)

That is, b* depends on Y and Z and L* only on Y.
It follows, and this is the key insight behind our extended

linear color correction method, that to map RGB to XYZ to
minimize the L*, a* and b* error (minimize Delta E error)
we should solve three separate minimizations. Extended
linear color correction method minimizes the following ex-
pression:

min
Mc

ΣN
i=1||fc(M cρ

i
)− fc(xi)||2 , c ∈ {L∗, a∗, b∗} (9)

where fc() is the scalar function returns the a single partic-
ular CIE LAB value, c ∈ {L∗, a∗, b∗}.

Clearly, we need to estimate X from the RGB, ρ, only
once and similarly Z is also estimated uniquely. We respec-
tively solve for Ma

1i and M b
3i, i = 1, 2, 3. In contrast we

estimate Y three times. Unlike linear regression we cannot
find Ma, M b and ML in closed-form. Rather, we adopt a
gradient-descent type minimizer to solve for the correction
matrices. This said, we can only be sure of finding locally
optimal answers and so we acknowledge that the promising
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results presented in the Experiments section might be able
to be improved still further.

At this point it is informative to compare our new method
to finding the single 3 × 3 matrix that minimizes a Delta E
error. There, we solve for X, Y and Z together and at the
same time given a single 3 × 3 matrix transform. That is
we minimized Delta E by optimising 9 unknown parame-
ters (the components of the matrix). In our extended frame-
work we have 15 degrees of freedom (count the variables in
Eqs. (6), (7) and (8)). These extra degrees of freedom ex-
plains why we are able to achieve an improvement in fitting
performance (see next section).

Finally, we note that although the above derivation is tar-
geted toward minimizing CIE LAB a similar methodology
could be followed to minimize CIE LUV or perceptual cor-
related in CIE CAM.

Visualizing the result of extended linear color cor-
rection

As presented, our new method is a way of better estimat-
ing CIE LAB values from a single estimate of X and Z and
three separate estimates of Y. Clearly, unlike conventional
least-squares regression, we cannot in a single image repre-
sent these 5 quantities. Instead if we wish to see the image
we must instead map the estimated CIE LAB values to cor-
responding XYZs and from there to sRGB. The result of in-
verting the CIE LAB transform for the extended regression
result for mapping Figure 1a) to 1b) - raw to rendered - is
shown in Figure 1f). The corresponding Delta E error map
is shown in Figure 1e). Notice there is a large improvement
in color correction (the error is about 2/3 less compared with
least-squares regression). In Figure 2c) we show the crop of
the jersey. Visually, the extended linear correction supports
a closer color match to the ground-truth, 2a), compared with
simple linear regression, 2b).

Experiments

We evaluate our new extended linear color correction,
denoted ExLCC, against 3 competing methods. These
comprise simple least-squares, LsqCC where we find the
3x3 matrix best mapping RGBs to XYZs. We also test
against the best 3x3 matrix optimized for CIE LAB error,
LabCC. As commented previously, linear methods are of-
ten used in color correction because they are exposure in-
variant. The non-linear Root-Polynomial color correction,
RpCC, is also designed to be exposure invariant. In RpCC
the terms

√
RG,

√
RB and

√
GB are added to R, G and

B and the corresponding regression solves for a 3× 6 color
correction matrix. The output generated for RpCC map-
ping Figure 1a) to 1b) is shown in 1h) and the corresponding
Delta E error map shown in 1g). For this example RpCC
delivers significantly improved color correction compared

Algorithm Mean Median 95% Max
quantile

LsqCC 1.93 1.18 5.96 22.63
LabCC 1.85 1.36 5.00 14.31
ExLCC 1.48 1.09 3.91 13.32
RpCC 1.49 0.96 4.35 17.15

Table 1. Mean, median, 95% quantile and max CIE ∆E color
correction performance averaged over 28 cameras and 102 lights,
boldface indicates the leading algorithm per column

Algorithm Mean Median 95% Max
quantile

ExLCC 64% 0% 96% 64%
RpCC 36% 100% 4% 7%

Table 2. The % of times a given algorithm, per statistic, delivers the
minimum error, the best performance, over the set of 28 cameras,
boldface indicates the leading algorithm per column

with LsqCC, see 1c) and 1d). Note that the average Delta
E error for RpCC and ExLCC is about the same.

We now carry out a second experimental test using
synthetic data and numerical integration. For surface re-
flectances we take the composite set of 1995 measurements
from [3]. From the same database we use the 102 measured
illuminant spectra. Finally we use the 28 sets of spectral
sensitivities for the cameras measured at RIT[16].

For the ith light and the jth camera we numerically in-
tegrate the 1995 RGBs and also the corresponding 1995
XYZs for this light. We now wish to evaluate in terms of
CIE LAB Delta E error how well each of our 4 correction
methods work. We evaluate each method on a 3-fold cross
validation basis. That is to say we divide the RGBs, ran-
domly, into 3 fold sets of roughly equal sizes. Then for each
set we train our regression method on the complement of
each fold set (the RGBs not in the set) and test on the RGBs
on the fold set itself. For each fold we calculate 4 summary
statistics the mean, median, 95% quantile and max Delta
E errors. Over all 28 cameras and all 102 illuminants we
then average these average statistics. The results are sum-
marised in Table 1 where overall our new ExLCC is shown
to deliver the best color correction performance.

Now, we calculate per statistical measure over all 28
cameras the % of times an individual color correction
method delivered the best results. These percentages are
tabulated in Table 2 for ExLCC and RpCC. Note, only for,
the max statistic the %s do not sum to 100% (here LabCC
delivered leading performance 29% of the time). Excepting
the median statistic, the new ExLCC method delivers the
best performance for most cameras.
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Figure 3. A Macbeth color checker

Algorithm Mean Median 95% Max
quantile

LsqCC 2.75 2.41 5.73 6.88
LabCC 2.52 2.23 5.74 7.10
ExLCC 2.36 1.75 5.65 6.99
RpCC 2.65 2.29 6.09 6.86

Table 3. Mean, median, 95% quantile and max CIE ∆E color cor-
rection performance for the images of 3 Macbeth color checkers,
boldface indicates the leading algorithm per column

In our third experiment, we validate our experimental re-
sult on real data. We took a picture, using a Nikon D70
camera, of a standard 24 patch Macbeth color Checker in 3
positions around a historical site near our lab, see Figure 3
for one of the pictures. Because we only have 24 patches
(and 6 of these are achromatic patches) the color diversity
is small and this might effect the efficacy of learning the
correct transform. So, we carry out a leave-one out cross
validation. Here we train on 23 RGBs and test on the 24th.
We do this 24 times where each patch in the checker is left
out once. For each Macbeth image we as before calculate
the mean, median, 95% quantile and max errors as before
and then average these averages over the 3 images. The re-
sults are tabulated in Table 3.

Compared to simple linear correction we see a signifi-
cant uplift in performance for the mean and median errors
(Linear least-squares has respectively 17% and 38% higher
error). However, the performance step is smaller for the
synthetic test (and this is also true for the Root-Polynomial
method).

We posit that the difference in performance is due to the
fact that the test on real color checker images was carried
out under daylight conditions where it is known that a linear
colour correction can (and does, as evidenced in Table 3)
deliver good colorimetric accuracy. In future work we will
repeat this experiment for a large corpus of real reflectances
and lights and we predict the performance increment will
correspond with the synthetic results reported in Table 1.

Conclusion

In this paper we demonstrated the result that the best lin-
ear color correction transform that minimizes a∗ is not the
same as the best transform for b∗ or L∗. This led to the de-
velopment of what we call extended linear color correction
where we solve for three different linear corrections (one
of L∗, a∗ and b∗). Due to the structure of the CIE LAB
equations, these 3 correction transforms are parameterized
by 5×3 unique linear coefficients. Compared with our new
extended linear approach, simple linear least-squares, per-
forms between 20% and 70% worse, depending on the data
set and the type of error being measured (e.g. mean, 95%
quantile and max). The extended linear approach was also
shown to deliver leading correction performance compared
with the Root-Polynomial color correction method which
had been shown to improve upon simple linear correction.
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