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Abstract
In this paper, we study a single-sensor imaging system that

uses a multispectral filter array to spectrally sample the scene.
Our system captures information in both visible and near-infrared
bands of the electromagnetic spectrum. Due to manufacturing
limitations, the visible filters in this system also transmit the NIR
radiation. Similarly, visible light is transmitted by the NIR filter,
leading to inaccurate mixed spectral measurements. We present
an algorithm that resolves this issue by separating NIR and visi-
ble information. Our method achieves this goal by exploiting the
correlation of multispectral images in both spatial and spectral
domains. Simulation results show that the mean square error of
the data corrected by our method is less than 1/20 of the error in
sensor spectral measurements.

Introduction
Multispectral images are extensively used in several fields

such as remote sensing, agriculture, product quality assessment,
security and surveillance. The conventional multispectral imaging
systems either use a filter wheel or a beam splitter with several
detectors to capture different spectral channels of the scene [9].
These systems are costly and can take up to a few minutes to scan
the scene. To overcome these difficulties, single-sensor multi-
spectral acquisition systems that use spectral filter arrays (SFA)
have been proposed [12].

In this paper, we study a single-sensor imaging system that
captures eight spectral channels in visible and near-infrared (NIR)
bands of the electromagnetic spectrum. The single-sensor acqui-
sition is enabled by the fact that silicon sensors are inherently re-
sponsive in the wavelength range of 400-1100 nm (visible band:
400-750 nm; NIR: 750-1100 nm). Figure 1 illustrates the quan-
tum efficiency curves for two silicon-based sensors. Single-sensor
acquisition of visible and NIR information is studied by both the
computational photography and the multispectral imaging com-
munities [4, 6, 7, 8, 9, 10, 14].

One of the main issues with such a camera is that the fil-
ters in the SFA cannot be manufactured to have a precise spec-
tral transmittance with no leakage. Visible filters usually trans-
mit NIR radiation and NIR filters pass the visible light as well.
This “spectral cross-talk” diminishes the value of capturing both
visible and NIR bands by increasing the redundancy in the mea-
surements. This deficiency in filter transmittance is imposed by
current manufacturing limitations. For instance, the Fabry-Perot
interferometer may show a harmonic, i.e. a second transmittance
peak, further away from the main transmittance peak of the filter.

In this paper, we develop a signal-separation technique that
estimates visible and NIR intensities from mixed sensor measure-
ments. Our algorithm exploits the spatial and spectral correlations
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Figure 1: The quantum efficiency of typical CCD and CMOS sen-
sors made of silicon. Both sensors are sensitive to visible (400-
700 nm) and NIR (700-1100 nm) bands. Data for the CCD sensor
is obtained from [15], and data for the CMOS sensor is provided
by [11].

of data by computing the sparse representations of different chan-
nels. Sparse decomposition methods are used both in the source
separation literature [2, 18] and in color and multispectral imag-
ing [3, 5, 16]. Golbabaee et al. use sparse decomposition to re-
construct multispectral data from a few noisy measurements [5].
In [16], we employed a sparsity-based estimation technique to
capture color and NIR images (four-channel images) using the
Bayer color filter array.

In the next section, we describe the sensor used for our exper-
iments. We then explain our signal-separation algorithm. Finally,
we present the experiments performed to evaluate our algorithm.
The simulation results show a significant improvement in spectral
accuracy of the data after applying our demultiplexing technique.

Multispectral Sensor Characteristics
Our multispectral imaging prototype uses a commercial sil-

icon sensor. A layer of transmittance filters with different char-
acteristics is mounted on the sensor. The filters are arranged ac-
cording to the SFA proposed by Miao et al. [12], shown in Fig-
ure 2. The system is driven by an electronic board and a Zed-
board that permits communication, and a software that enables
capturing both images and video sequences. The sensor provides
images with eight spectral bands and spatial resolution of 320 ×
256 pixels.

A spectral calibration performed by a monochromator pro-
vides the relative sensor response in the range of 380− 1100 nm
with steps of 10 nm [19]. The spectral sensitivities are shown
in Figure 3. In the following, we refer to this sensor as the real
sensor. We number the filters (and their corresponding spectral
channels) in the order of their peak transmittance from 1 to 8,
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Figure 2: Spatial arrangement of SFA filters in our system. The
SFA is designed by the binary tree algorithm of [12]. Figure 3
shows the spectral characteristics of filters in our prototype.

Figure 3: Spectral sensitivities of our multispectral sensor. Sensi-
tivities from left to right correspond to channels 1 to 8.
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Figure 4: Spectral sensitivities of an ideal multispectral sensor.
These sensitivities are not physically realizable. The curves are
used solely for comparison.

where filter 1 transmits mainly the blue light, and filter 8 is the
NIR filter.

As shown in Figure 3, visible filters transmit NIR radiation
and the NIR filter transmits visible light. This leads to the sensor
measurements being a mixture of visible and NIR information in
each pixel. Hence, this sensor does not capture an accurate spec-
tral signature of the scene.

An arbitrary ideal situation, which usually cannot be
achieved in practice due to physical limitations, is when filters
transmit the light only in a narrow band around their peak trans-
mittance. We illustrate the spectral sensitivities for one such sys-
tem in Figure 4. We simulated these curves simply by setting the
transmittance of our filters outside their spectral range to zero. In
what follows, we call this sensor the ideal sensor.

In the next section, we present a post-processing technique
that demultiplexes visible and NIR information captured by the
real sensor (Fig. 3). By using only the mixed and subsampled
sensor measurements, our technique estimates an accurate multi-
spectral representation of the scene. Simulation results show that
the output of our algorithm is a close approximation of the mul-
tispectral data captured by the ideal yet non-realizable sensor of
Figure 4.

Demultiplexing Visible and NIR Channels
As shown in Figure 3, the NIR transmission of visible filters

5-7 in our imaging system is negligible. Hence, we can reason-
ably assume that the sensor receives only the visible radiation at
the locations of these filters. Based on this observation, we de-
velop an algorithm that separates the visible channels 1-4 and the
NIR channel starting with the mixed sensor measurements.

Let us call the vector containing the intensities of four mo-
saiced visible channels and the NIR channel, as they have been
captured by the ideal sensor of Figure 4, x. y holds the mixed
sensor measurements in the same pixels, as captured by the real
sensor of Figure 3. The goal of our algorithm is to estimate x
given y. This estimation, similar to the general problem of signal
separation, is underconstrained. To constrain the problem, we as-
sume that multispectral images can be compactly represented in
a transform domain trained to express the correlation in this class
of signals.

To estimate the intensities (x) in each local patch of the im-
age, we first compute the sparse coefficients of spectral channels
in the transform domain:

ŝ = argmin ‖s‖0 s.t. y = ADs, (1)

where s is the sparse representation of the data, with minimum `0
norm that indicates sparsity. A is the transform that maps the ideal
spectral sensitivities shown in Figure 4 to those of our real sensor
(Fig. 3). D is a transformation matrix that is designed to decorre-
late the multispectral data in the wavelength range covered by our
imaging system. To design D, we apply the training algorithm of
Aharon et al. [1] to ground-truth data simulated using the ideal
spectral sensitivities (Fig. 4).

Once the sparse coefficients are computed by solving (1),
the target signal x is estimated as x̂ = Dŝ. This process is repeated
for all the overlapping patches in the image to reconstruct visible
channels 1-4 and the NIR channel.

The algorithm explained above removes the contribution of
visible channels 1 to 4 from the measurements at the location of
the NIR filter. However, the NIR filter transmits the radiation in
the range of 600-700 nm as well. To correct for this, we interpo-
late mosaiced channels 5-7 and obtain their intensities in the loca-
tion of the NIR filter. We then subtract the intensities of channels
5-7 from the NIR channel estimated in the previous step of the
algorithm. In this step, we take the relative response of the sensor
in the corresponding channels into account.

Experiments
In this section, we analyze the performance of our algorithm

both for synthetic data and real multispectral data captured by the
imaging system described previously.

Implementation Details
Our algorithm processes the patches of size 8×8 where the

SFA size is 4× 4. To increase the reconstruction quality, we use
an overlap of six pixels in each dimension between sequential
patches. To solve (1), the sparse decomposition algorithm of Mo-
himani et al. [13] is employed. After demultiplexing NIR and
visible information, we apply the binary-tree demosaicing algo-
rithm of Miao et al. [12] to obtain full-resolution multispectral
images.
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Table 1: The mean square error (MSE) values for the spectral data simulated using the sensitivity of the real sensor (labeled “Real-sensor
data”) and the output of our algorithm (called “Ours”). The errors are computed with respect to the data simulated by the ideal sensor.

Image case Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8
San Francisco Real-sensor data 0.2076 0.0914 0.1301 0.0584 0.0103 0.0152 0.0069 0.0064

Ours 0.0107 0.0108 0.0101 0.0054 0.0103 0.0152 0.0069 0.0001
Stanford Dish Real-sensor data 0.3856 0.2133 0.3814 0.2125 0.0483 0.0451 0.0361 0.0188

Ours 0.0282 0.0342 0.0428 0.0270 0.0483 0.0451 0.0361 0.0002
Stanford Tower Real-sensor data 0.1855 0.0967 0.1599 0.0722 0.0118 0.0149 0.0049 0.0056

Ours 0.0064 0.0084 0.0093 0.0047 0.0118 0.0149 0.0049 0.0001

Synthetic Data
To objectively evaluate the proposed algorithm, we use the

hyperspectral radiance data of the SCIEN database [17]. These
images contain spectral information in the range of 415 to 950nm.

Starting from the SCIEN hyperspectral data, we simulate the
multispectral acquisition both by the real sensor and by the ideal
one. The acquisition is simulated according to the following im-
age formation model:

ρi =
∫

λ

R(λ )Si(λ )dλ , (2)

where ρi, the pixel intensity in channel i is obtained by integrating
the product of the radiance image R(λ ) and the sensor sensitivity
S(λ ) in channel i. To perform the above simulation, we down-
sampled the image radiance data in the SCIEN dataset by linear
interpolation to achieve the spectral sampling rate of 10 nm. We
limited the sensor range to [415,950] nm.

We simulated multispectral acquisition by the real and ideal
sensors for three images provided in the SCIEN database, namely
San Francisco, Stanford Dish, and Stanford Tower. We then pro-
cessed the image produced using the sensitivities of the real sen-
sor by our algorithm to obtain a corrected image that estimates the
ideal measurements. Figure 5 shows the color representations of
these three scenes.

To evaluate the quality of results, we compute the mean
square error (MSE) between the ideal measurements and those
simulated using the real sensor sensitivities, and between the ideal
measurements and the output of our algorithm. The MSE results
are reported in Table 1, when the pixel intensities are normalized
to the range of [0,1].

As explained before our algorithm does not process visible
channels 5-7, as the NIR transmittance of the corresponding filters
is negligible. As a result the MSE values of the real measurements
and our results for these channels are exactly the same. Our algo-
rithm, however, processes visible channels 1-4 and the NIR chan-
nel (channel 8) for which we observe significant improvements in
terms of MSE compared to real-sensor measurements. Using our
technique, the error for these channels is reduced to 1/20-1/60 of
the error for the real-sensor measurements.

Figures 6-7 show crops of San Francisco and Stanford dish
scenes1 in visible channels 1-4 and the NIR channel. For each
scene, we show three images: the ground-truth image simulated
by the ideal sensor, the image simulated by the real sensor, and the
result of our algorithm. These figures demonstrate that as opposed

1Due to space constraints we omit the subjective comparisons for the
Stanford dish scene. As shown in Table 1, similar improvements are ob-
tained for this scene.

to real-sensor measurements, the intensities in our results closely
approximate the ground-truth images. For instance, consider the
vegetation in these figures. Vegetation reflects NIR more than the
visible light and appears brighter in the NIR image. However, as
visible filters of the real sensor transmit NIR radiation, vegetation
looks much brighter in the visible channels of the real images. As
shown in Figures 6-7, our algorithm successfully corrects real-
sensor images, so the intensities in our results are closer to the
ground-truth images.

Note that for each scene, the spectral channels are mosaiced
according to the SFA in Figure 2, where the sampling rate of each
channel is only 1/8. As a result, the spatial resolution of the demo-
saiced images is lower than the images captured by a color camera
with the same sensor resolution. In fact, any single-sensor mul-
tispectral imager trades off spatial resolution to achieve a much
higher spectral resolution compared with a color camera.

Real Data
This subsection presents the results of applying the proposed

algorithm on real multispectral data captured by our imaging sys-
tem. The objective of our algorithm is to increase the spectral
accuracy of measured data. As no multispectral ground-truth is
available for our real dataset2, to evaluate the spectral accuracy,
we form the sRGB image for each multispectral image.

Figure 8 shows the impact of our correction algorithm on the
color acuity of the captured data. Figure 8-(a) is captured by a
color camera. To compute the color image in Figure 8-(b) we ap-
plied the demosaicing algorithm of Miao et al. [12] and mapped
the 8-band multispectral image into the sRGB color space using
the spectral sensitivities of our sensor, XYZ color matching func-
tions, and XYZ to sRGB color transformation. Figure 8-(c) is ob-
tained with the same process except that before demosaicing, our
algorithm is applied to separate mixed sensor measurements. As
shown in this example, our algorithm results in a more accurate
color reproduction. For instance, see the color of sky in the upper
right part of the image, which appears greenish in Figure 8-(b),
while it is blue both in the ground-truth color image and the result
of our algorithm. The color cast in Figure 8-(b) might be caused
by the higher NIR transmittance of the mid-wavelength filters in
our imaging system compared to the filters transmitting the red
light.

2Capturing ground-truth for this dataset requires an ideal multispectral
imaging system in which the spectral transmittance of different filters do
not overlap.
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(a) The San Francisco Scene (b) The Stanford Dish Scene (c) The Stanford Tower Scene

Figure 5: The color representations of three scenes in the SCIEN dataset used in our experiments.

(a) The ground-truth images (b) The real-sensor images (c) Our results

Figure 6: A crop of the San Francisco scene from the SCIEN dataset. (a) The spectral images acquired by the ideal sensor (ground-truth
images). (b) The spectral data simulated using the real sensor model. (c) Our results. From top to bottom: Visible channels 1-4 and
the NIR channel (channel 8). Visible filters of the real sensor transmit the NIR radiation as well. As a result, vegetation appears much
brighter in visible channels simulated based on the real sensor sensitivity. Moreover, the NIR filter transmits a portion of the visible light,
hence the sky appears brighter in channel 8 of the real-sensor data. Our algorithm corrects for these issues by accurately estimating the
visible and NIR intensities. The differences between pixel intensities are most noticeable when this figures is displayed on the screen.
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(a) The ground-truth images (b) The real images (c) Our results

Figure 7: A crop of the Stanford Tower scene from the SCIEN dataset. (a) The spectral images acquired by the ideal sensor (ground-truth
images). (b) The spectral data simulated using the real sensor model. (c) Our results. From top to bottom: Visible channels 1-4 and
the NIR channel (channel 8). Our algorithm (c) corrects for the spectral inaccuracies observed in real-sensor images (b) compared with
ground-truth (a). The differences between pixel intensities are most noticeable when this figures is displayed on the screen.

(a) Ground-truth color image (b) Without spectral separation (c) Our result

Figure 8: (a) The ground-truth image captured by a three-channel color camera. (b) The color image of the multispectral data captured by
our imaging system. (c) The color image of the multispectral data corrected by our algorithm. Our algorithm results in a more accurate
color reproduction of the scene. Note that the sensor resolution of the color camera is higher than our multispectral sensor.
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Conclusion
A single-sensor imaging system with a multispectral filter

array offers a more efficient solution in terms of price and con-
venience of use compared with conventional multispectral acqui-
sition techniques. The transmittance precision of the manufac-
tured filters used in such a system is, however, limited, resulting
in strong leakage of other spectral bands into each filter. In this
paper, we demonstrated this issue in our multispectral visible and
NIR acquisition prototype and presented a post-processing tech-
nique that corrects for the leakage of the visible radiation into NIR
pixels and vice versa.

As proposed in the source separation literature, we designed
a transform domain that represents the spatial and spectral cor-
relations for ground-truth multispectral data. Our algorithm de-
multiplexes NIR and visible information by projecting the mixed
sensor measurements into this transform domain.

We analyzed the performance of our algorithm for the im-
ages of the SCIEN dataset, and showed that it provides a very
close approximation of the data simulated by the ideal yet imprac-
tical multispectral sensor. The same improvement in the spectral
accuracy was demonstrated for real data as well. These results
ensure that our post-processing technique can overcome the in-
herent limitations in manufacturing spectral filters and provide an
accurate spectral representation of the scene.
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