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Abstract 

This paper proposes a method to analyze the observed images 

of fluorescent images influenced by mutual illumination and 

estimate the spectral components. We suppose a general case 

where the entire surfaces of fluorescent objects have mutual 

illumination effects. First we model mutual illumination between 

the two objects. It is shown that the spectral composition is 

summarized with four components of (1) diffuse reflection, (2) 

diffuse-diffuse interreflection, (3) fluorescent self-luminescence, 

and (4) interreflection by mutual fluorescent illumination. Each 

component has two unknown factors of the spectral functions 

depending on wavelength and the weighting factors depending on 

pixel location. Second, an iterative algorithm is developed to solve 

this nonlinear estimation problem. Moreover, aiming a general 

solution which is independent of the initial conditions, we adopt a 

stabilization index to enforce the spectral smoothness and the 

spatial smoothness. Finally, the feasibility of the proposed method 

is shown using the spectral images of two adjacent fluorescent 

objects captured by a spectral imaging system in the visible range. 

Introduction  
When multiple objects are located closely, the phenomenon 

called interreflection or mutual illumination is observed on the 

object surfaces.  In such a case, the illumination consists of at least 

two distinct parts: the direct illumination from a primary light 

source, and the indirect or mutual illumination, created by light 

coming from the other object surfaces. The mutual illumination is 

accompanied with a change in the appearance of the object 

surfaces. The problems of mutual illumination analysis were 

studied in a variety of field such as color science, imaging 

technology, computer vision, and computer graphics [1]-[8]. 

However, in most of the previous studies, non-fluorescent objects 

such as matte object and inhomogeneous dielectric object were 

used.   

When two or more fluorescent objects are located closely, an 

object surface is illuminated by fluorescence emitted from the 

nearby object surfaces as an indirect illumination, which causes 

light reflection and fluorescence excitation on the target object. We 

note that the mutual illumination phenomenon between the 

fluorescent objects is composed by two types of mutual 

illumination on the basis of light reflection and fluorescence 

emission. In our previous study [9], we proposed a method to 

estimate the spectral image components from the captured images 

of two closely apposed fluorescent objects. We supposed that we 

knew the exact Donaldson matrices, representing the bispectral 

characteristics of the fluorescent objects. Then the problem of 

component estimation was reduced to a linear estimation problem. 

As a result, the observed image was decomposed into several 

spectral component images.  However, it should be noted that, if 

the object surfaces are influenced by mutual illumination, we 

cannot have exact knowledge about the bispectral characteristics of 

the fluorescent objects. 

The present paper supposes a general case where the entire 

surfaces of fluorescent objects have mutual illumination effects.  

We develop a method to analyze the observed images influenced 

by the mutual illumination and estimate the spectral components.  

First, we model mutual illumination between the two objects. We 

show that the observed spectral images are described by a system 

of nonlinear equations which have two factors: one factor is 

spectral functions depending on wavelength and another is the 

weighting factors depending on pixel location. Concerning the 

former factor, we have various spectral functions composed of two 

surface reflectances and two fluorescent emissions. Therefore, we 

have to solve a multiplication of two types of unknown factors: the 

bispectral functions and the location weighting coefficients. The 

model is more precise and generalized than our recent model [10].  

Second, we propose an iterative algorithm to estimate the spectral 

functions and the location weights. Moreover, aiming a general 

solution which is independent of the initial conditions, we adopt a 

stabilization index to enforce the spectral smoothness and the 

spatial smoothness. In this experiments, the spectral images are 

captured using a spectral imaging system in the visible range (400, 

700 nm) under an incandescent lamp and a sunlight lump.  Finally, 

the feasibility of the proposed method is shown in the case of 

mutual illumination. 

Model of Two Fluorescent Objects with Mutual 
Illumination 

A Donaldson matrix ( , )em exD    represents the bispectral 

radiance factor of a fluorescent object as a two-variable function of 

the excitation wavelength ex  and the emission/reflection 

wavelength em . The diagonal of ( , )em exD    represents the surface-

spectral reflectance ( )S  , and the lower half of the off-diagonal 

represents the luminescent component by fluorescent emission.  

The luminescent radiance factor is separated into the emission and 

excitation wavelength components as ( , ) ( ) ( )L em ex em exD       . 

A discrete form of the Donaldson matrix can be represented in an 

N × N matrix as 
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where refD  is a diagonal matrix with elements (i = 2, 3, .., N) 

representing the reflected radiance factor, and lumD  is a triangular 
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matrix of the luminescent radiance factor with elements i  (i = 2, 

3, .., N), and  i  (i = 1, 2, .., N - 1) representing the emission 

spectrum and the excitation spectrum, respectively [11],[12].  The 

norm of the excitation spectral vector β  is normalized as 1β .  

Let us suppose two fluorescent objects with matte surfaces are 

located closely as shown in Figure 1, where a mutual illumination 

occurs between the two surfaces with different Donaldson matrices. 

The two surfaces are illuminated uniformly with a single light 

source. The spectral compositions observed on Surfaces 1 and 2 

are decomposed into two components of the direct illumination 

from the light source and the mutual illumination between the two 

surfaces, which are described as the following forms:  

     

     

R1 L1 R1 L1 R2 L2

R2 L2 R2 L2 R1 L1

Surface1:

Surface2: 

   

   

D D D D D D e

D D D D D D e

 (2) 

where e denotes an N-dimensional illuminant vector of a discrete 

representation of ( )E  . 

 

 

Figure 1. Two object surfaces with different bispectral characteristics under a 
uniform illumination. 

On the basis of the above properties of spectral composition, 

we describe the spectral model of mutual illumination by the 

continuous functions of wavelength as shown in Eq.(3). The 

observations of spectral radiances at location x of Surface 1 and 

Surface 2 are represented as 
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where the interval of integration is [350, em ],  all weights ( )ijf x

are variable of location x and independent of wavelength  . It 

should be noted that all integrations in Eq.(3) produce constant 

values. When we summarize the different terms with the same 

spectral composition into one group, the above observation 

equations are simplified and grouped based on the spectral 

components as in the form: 
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where 11 12 21 22, , ,C C C C are not constant, differently from [10], 

which are calculated from the spectra of excitation, reflection, and 

illuminant.  Note that the observed radiance factors consist of only 

four spectral components 1( ) ( )S E   ( 2( ) ( )S E   ), 

1 2( ) ( ) ( )S S E    ( 2 1( ) ( ) ( )S S E   ), 1( )  ( 2( )  ), and 

1 2( ) ( )S    ( 2 1( ) ( )S    ). These components correspond to (1) 

diffuse reflection, (2) diffuse-diffuse interreflection, (3) fluorescent 

self-luminescence, and (4) interreflection caused by the fluorescent 

illumination from the adjacent surface. 

We can summarize the observation model in a matrix form. 

Let 1 2( )s s  and 1 2( )α α  be N-dimensional column vectors 

representing the reflectance and emission spectra. Also, let 

1 2( )( ( ))F x F x  be 4-dimensional column vectors representing the 

location weights and 1 2( )A A   be an N × 4 matrices as follows:  
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 (5) 

where symbols  and t represent element-wise multiplication and 

matrix transposition, respectively. Then the observations with 

mutual illumination effects are modeled in a simple matrix 

equation as 

1 1 1

2 2 2

( ) ( ),

( ) ( ).





y x A F x

y x A F x
 (6) 

Estimation Method of Spectral Image 
Components 

Iterative estimation algorithm 
Figure 2 shows the surface observations in the joint range of 

wavelength  and location x.  If both surfaces are influenced by 

mutual illumination, we cannot obtain the exact Donaldson 

matrices. In such a case, we have to estimate the spectral functions 

and the location weights from the observations.  This estimation 

leads to a nonlinear estimation problem to minimize a residual 

error 
2

y AF , where both A and F are unknown. In this paper, 

we propose an iterative approach to solve this nonlinear estimation 

problem. We note that the wavelength range of fluorescent 
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emission ( )   can be measured by using a separate way such as 

the use of a UV light source. Moreover, we suppose a weak 

influence of interreflection where the effect is canceled out 

between two opponent color surfaces.   In such a case we can 

predict the possible spectral functions of each surface.   Under this 

situation, the unknown quantities to be estimated are the relative 

shapes of spectral functions ( )S  , ( )  , ( )   and the location 

weights 1 2 3 4( ), ( ), ( ), ( )F F F Fx x x x   for each object surface.  

 

 

Figure 2. Surface observations in the joint range of wavelength  and location 
x=(x,y). 

Our iterative approach is based on an alternate estimation of 

the spectral functions and the location weights. Instead of the joint 

minimization over variables  and x, we separate the minimization 

into two steps of a linear least squares estimation.  The observation 

functions with two variables  and x are expressed in two 

equivalent forms as follows:   
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and 

Eq. (7) is used for determining the location weights by the linear 

least squares method when the spectral functions are fixed. Also 

Eq. (8) is used for determining the spectral functions when the 

location weights are fixed. Therefore, minimization of the residual 

error is performed by estimating the spectral functions and the 

location weights alternately, based on the linear least square 

minimization with non-negativity constraints. All estimates are 

updated in two steps. We repeat this iterative process with 

appropriate initial conditions of the spectral functions. In Eq.(8) 

the spectral functions include the spectral multiplication terms 

1 2( ) ( )S S  , 1 2( ) ( )S    , and 2 1( ) ( )S    . Although these 

terms are estimated by the least squares method as independent 

variables, the estimates are not related to the estimates of 1( )S  , 

2( )S  , 1( )  , and 2( )  . In the range where there is no 

fluorescent emission of ( ) 0   , a simplified matrix equation is 

used for updating the remaining spectral functions. 

In a practical iterative estimation algorithm, the vector length 

of each spectral function is known in advance, that is, the L2-

norms 
1s , 

2s , 
1α , 

2α , 
1 ( 1)β , 

2 ( 1)β  are given as a 

priori knowledge. The initial conditions in the iterative estimation 

( )   of spectral functions are set to constant spectra with the 

given norms. The excitation spectral function of each surface is 

estimated in a separate way without using the iterative algorithm. 

When the spectral reflectance estimation of ( )S   is updated at 

each step of the iterative process, the excitation spectrum can be 

estimated by substituting the reflectance estimate ˆ( )S   into the 

following relationship:  

 ˆ( ) ( ) 1 ( )Q S      (9) 

where ( )Q    is the luminescence efficiency [11].   

It is shown in the later experiments that the proposed iterative 

algorithm converges rapidly. 

Norm estimation of spectral functions 
If the surface is influenced by strong interreflection, the 

apparent spectral function, especially surface reflectance, is usually 

larger than the original reflectance without interreflection. As a 

result the norms of the spectral functions are likely increased. In 

this section, we consider how to estimate the norms in order to 

further generalize the algorithm. Let K be a scale factor to 

transform the previously given reflectance norm s  to true norm 

in the form K  s .  Note that the observations are multiplications 

of the spectral functions and the location weights.  Therefore, if the 

scale factor is estimated as 
1K , the spectral reflectance estimate  

ˆ( )S   and the location weight are corrected into 
1

ˆ( )K S   and 

1
ˆ1 ( )K F x , respectively. Also the spectral luminescence ˆ( )   

and its location weight ˆ ( )F x  are corrected in the same way as  

2
ˆ( )K    and 

2
ˆ1 ( )K F x  . Therefore our task is to determine the 
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scale parameter K based on the obtained set of estimates. 

Smoothness constraint is introduced as an evaluation index 

for K. We have two smoothness constraints on the spectral 

functions and the surface location weights. The roughness 

(smoothness) of the spectral functions is calculated from difference 

data between adjacent wavelengths 1( , )i i    in the equations 
2ŝ  and 2ˆ


 , where the wavelength ranges are [400, 

700nm] for spectral reflectance and the emission range for spectral 

luminescence in this paper.  The roughness of the location weights 

is calculated from two-dimensional difference data between the 

adjacent pixels 1( , )i ix x   and 1( , )i iy y   in the equation 

 2 2ˆ ˆ
x yx y

F F  , where the location range is a two-dimensional 

area specified by the observed image.  Because the two types of 

roughness are in different dimensions, we may consider a 

parameter to balance the two roughnesses for determining K. Let 

  be a balancing parameter.  

Based on the above preparations, the evaluation index of 

smoothness constraint is described as follows:  
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In Eq.(11) iW and iR ( 1,2,...,4)i   represent the wavelength 

ranges and the image size, respectively. The optimal scale factors   

are then obtained by minimizing each term of the smoothness 

index E individually as 

4 , ( 1,2,...,4)ii

i

i

B
K i

A


   (12) 

Finally, the balancing parameters i (i = 1, 2,…, 4) are chosen 

empirically based on the experiments because these cannot be 

determined analytically nor theoretically. In this paper, we take 

balance equally between the wavelength and the location as 

1i  . 

Experiments 
The feasibility of the proposed method was examined in 

details using pairs of fluorescent object samples.  The light sources 

used in the experiments were an incandescent lamp and an 

artificial sunlight lamp (SERIC XC-100). The spectral imaging 

system consisted of a monochrome CCD camera (QImaging Retiga 

1300), a VariSpec LCT filter, and a personal computer. The 

spectral images were captured at an equal wavelength interval of 5 

nm in the visible range (400, 700 nm). Therefore, each captured 

image was represented in an array of 61-dimensional vectors. The 

Donaldson matrix of a fluorescent object was estimated by the two 

illuminant projection method [12] using the incandescent lamp and 

the sunlight lamp. In experiments, we placed two fluorescent 

boards at an angle of 90 degrees on a table covered with a black 

cloth. The sizes of the boards were 10cm by 10cm. When the light 

source was straight in front of the object, interreflection effect was 

observed around the boundary between the two surfaces.  

Figures 3 (a) and (b) show the observed images of a yellow 

fluorescent board (left) and a red fluorescent board (right) under 

the two light sources. The image size is 413 × 557 pixels. We see 

clearly color changes in the intersection regions as the results of 

the strong interreflection effects. Note that the object color at the 

right side reflects on the left surface. We cut a 60 pixel width 

image across the intersection out of the most influenced region of 

the original images. Figures 3 (c) and (d) show the observed 

images in the narrow regions. Although the Donaldson matrices for 

the two surfaces were obtained at these regions, the spectral 

functions were distorted from the original features.   

 

 

Figure 3. Observed images and cut images.  (a) and (b): observed images of 
a blue fluorescent board (left) and a green fluorescent board (right) under the 
two light sources.  (c) and (d): cut images with narrow width around the 
intersection out of the original image. 

Under the condition that the Donaldson matrix is unknown, 

we adopted the two step estimation procedure to define the most 

appropriate estimates of the spectral functions.  First, the iterative 

estimation algorithm was used to find the best estimates under the 

norm constraint. The solid lines in Figure 4 represent the initial 

spectra in the iterative algorithm, where we assumed
1s =

2s =2.5, 

1α =
2α =0.5. Second, the norms of the spectral functions were 

adjusted based on the smoothness index for the spectral functions 

and the location weights. Figure 5 shows the estimation results of 

the spectral functions. The broken curves (Estimate 1) in Figure 5 

represent the estimates after five iterations of the iterative 

estimation algorithm.  Large errors remain in the reflectance and 

emission estimates of
1

ˆ ( )S  and 2( )  . The bold curves (Estimate 

2) in Figure 5 represent the final estimates after the second step. 
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The scale factors of adjusting the norms were determined as 
1K = 

0.76, 
2K = 0.96, 

3K =1.04, and 
4K = 0.83 after roughness 

computation of the spectral functions and the location weights in 

Eq.(11). The estimation accuracy for the diffuse reflectance 
1

ˆ ( )S   

was greatly improved. Figure 6 represents the estimation results for 

the excitation spectra, which were determined using the reflectance 

estimates in Eq. (9).   

Figure 7 shows the estimated location weights for the 

respective components. Figure 8 demonstrate the component 

images (a)-(c) and the constructed images (d) of the two surfaces 

under the incandescent light and the sunlight. It should be noted 

that relighting the two surfaces under arbitrary illuminant and 

displaying the component images can be performed by using the 

estimated spectral functions and the estimated location weights. 

 

 

Figure 4. Constant spectra as initial conditions of the iterative algorithm. 

 

Figure 5. Estimation results of the spectral functions in the two steps, where 
Estimate 1 represents the estimates by the iterative estimation algorithm and 
Estimate 2 represents the final estimates after the scale adjustment of the 
norms. 

 

Figure 6. Estimation results for the excitation spectra of the blue-green objects. 

 

Figure 7. Estimated location weights for the respective components of the 
observed images in Figures 3 (c) and (d). 

 

Figure 8. Component images (a)-(d) of the observations under two light 
sources and reconstructed images (e) from (a)-(d). 
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Conclusions 
The present paper has proposed a method to analyze the 

observed images of fluorescent images influenced by mutual 

illumination and estimate the spectral components.  The observed 

image of mutual illumination was modeled by sum of products of 

the spectral component functions and their location weights on the 

surfaces. We showed that the spectral composition was 

summarized with four components.  In order to solve the nonlinear 

estimation problem, we developed an iterative algorithm to 

estimate the spectral functions and the location weights. Moreover, 

in order to estimate the norms of the spectral functions, we adopted 

a stabilization index to enforce the spectral smoothness and the 

spatial smoothness.  An advantage of the present algorithm is that 

the Donaldson matrix is not necessary as the initial condition.  In 

experiments, the feasibility was shown for two adjacent fluorescent 

objects with mutual illumination effects. The present model and 

estimation method can be applied to general objects with matte 

surfaces without glosses or highlights.  The norm estimation of 

spectral functions is not applicable to uneven object surfaces. 
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