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Abstract 
Halftoning is one of the key stages of any printing image pro-

cessing pipeline. With colorant-channel approaches, a key chal-
lenge for matrix-based halftoning is the co-optimization of the 
matrices used for the individual colorants, which becomes increas-
ingly complex and over-constrained as the number of the colorants 
increases. Both choices of screen angles (in clustered-dot cases) or 
structures and control over how the individual matrices relate to 
each other and result in over- versus side-by-side printing of the 
colorants impose restrictions that are challenging to reconcile. The 
solution presented in this paper relies on the benefits of a HANS 
pipeline, where local Neugebauer Primary use is specified at each 
pixel and where halftoning can be performed using a single matrix, 
regardless of the number of colorants used. The provably complete 
plane-dependence of the resulting halftones and an application to 
security printing will be presented among the solution’s benefits. 

Introduction  
The color and image processing pipeline of any printing system 

needs to address at least the following questions: how does color 
content get adjusted to the capabilities of the given printing system 
(i.e., color management), how are the system’s colorants combined 
to match the colors of its gamut (i.e., color separation) and how color 
separation choices are translated into discrete colorant amount 
placement in the final print (i.e., halftoning). 

Traditionally, color separation consisted in answering the ques-
tion of how much of each available colorant to use for matching each 
color within a printing system’s color gamut and halftoning was then 
responsible for making spatial choices of where to apply each col-
orant in turn, given the choices of colorant amounts made during 
halftoning. Since halftoning colorant amounts one by one can lead 
to unwanted interactions between their halftone patterns, previous 
work has looked at making choices of individual halftoning matrices 
that minimize moiré effects (e.g., Amidor et al., 1994), or that pro-
vide plane-dependency between specific pairs of colorants, allowing 
for their placement to be kept apart for as long as possible (e.g., 
Zhang et al., 2012). 

Since such color halftoning challenges follow from the difficul-
ties of acting on colorant amounts determined by color separation, 
when the domain in which color separation specifies printed output 
changes, so do the constraints and opportunities presented to half-
toning. This is precisely what the introduction of HANS (Morovič 
et al., 2011) brings to the table, where color separation no longer 
specifies colorant amounts, but where it determines what relative 
area coverage to assign to each of a system’s Neugebauer Primaries 
(NPs). Hence, for a binary printing system with three inks, CMY, 
where color separation previously specified continuous amounts of 
CMY, a HANS pipeline specifies relative area coverages for the sys-
tem’s eight NPs: blank substrate, C, M, Y, CM, CY, MY, CMY. 
Instead of the result of color separation being instructions that apply 
colorant-by-colorant, they become more akin to selecting numbers 
of tiles of different colors with which to fill a given area of a mosaic 
(Fig. 1).  

 
Fig. 1: HANS print control as mosaic building. 

More specifically, the output of color separation is in the form 
of NP area coverages (NPacs) per pixel, such as the following ex-
ample taken from our simple CMY system: 
[w,C,MY]=[0.6,0.3,0.1], which specifies that 60% of some local 
area be left blank, 30% be covered by the cyan colorant and 10% 
contain the combination of the magenta and yellow colorants. 

In previous work, the halftoning applied to such NPacs has been 
error-diffusion based (Morovič et al., 2011), where at a given half-
tone pixel, one of the NPac’s NPs was selected. E.g., in the above 
example, it could be the blank NP that would be selected for one 
pixel, resulting in an error of 40% too much blank coverage and cyan 
and magenta plus yellow being short by 30% and 10% respectively 
(Fig. 2). This error would then be diffused to neighboring pixel’s 
NPacs using existing error diffusion techniques (Ulichney, 1987). 

 
Fig. 2: HANS error diffusion example. 
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While error diffusion is an excellent way for taking NPacs de-
termined by a color separation and constructing colorant patterns 
from them, it does have several limitations. The first of these is 
throughput, since a sequential traversal of halftone pixels is required 
and even though there have been some ingenious attempts at paral-
lelizing error diffusions (Zhang et al., 2012), even their speeds are 
nothing like those of matrix based halftoning, where each halftone 
pixel can be processed independently. This in turn lends itself to 
massive parallelization and provides a scalable throughput architec-
ture. 

The second challenge of error diffusion is that it involves an el-
ement of randomness and therefore results in varying halftone pat-
terns for the same input. This results both in challenges for color 
modeling and for post-processing that requires deterministic pat-
terns (e.g., the stitching together of halftones for separate parts of a 
printing system, or the application of data embedding). 

Both of these challenges point to the use of matrix-based half-
toning for HANS. However, existing solutions, where there is po-
tentially a different halftoning matrix for each colorant and where 
halftoning is done mostly independently for separate colorant chan-
nels, are not directly applicable to HANS. The key reason for this is 
the difference in the two domains – the colorant one and the NPac 
one. While the former under-determines halftone patterns, in that 
multiple patterns of colorant placement can match a given combina-
tion of colorant amounts, the latter specifies unique colorant combi-
nation statistics. As a result, the separate use of halftoning matrices 
is not an option, since their application to on an NP-by-NP basis 
would introduce even greater constraints on their generation that 
colorant channels do and since the number of NPs can exceed sev-
eral hundred or even thousand, this may not even be possible. 

To address these challenges, the PARAWACS (Parallel Ran-
dom Weighted Area Coverage Selection) method will be introduced 
next, followed by a proof of its full plane-dependence and an illus-
tration of some of its benefits by applying it to security printing. 

PARAWACS 
Like in the case of an ink-channel separation, HANS too uses 

relative proportions of addressable channels, however unlike the 
ink-channel case, these addressable channels are Neugebauer Pri-
maries and the amounts relate to proportions of device states. For an 
input, such as RGB device color, a HANS separation uses recipes of 
NPs or NP area coverages as its domain. These area coverages can 
be thought of as implicitly referring to a unit area and the propor-
tions of an NPac therefore express relative sub-areas of the unit area 
that need to be occupied by each of the NPs present in the NPac, at 
the proportions given by the area coverages. Hence, one way to think 
about the role of halftoning in this context is that for a sufficiently 
large area of a constant NPac, halftoning should result in a place-
ment of individual NPs such that when counting their frequency 
over the area, the original NP area coverage is obtained. Note that 
this is no different from traditional, ink-channel based separations 
where ink coverages are specified and halftoning distributes them. 
There too an area of constant ink-channel coverages, once halftoned, 
will result in the specified amounts of inks. 

So, given an area of 128 x 128 pixels that has a constant NPac 
of 80% blank substrate, 10% one drop of Magenta ink and 10% of 
Cyan ink, then if halftoning just sequentially placed them over the 
specified area, the patch would look like that in Fig. 3. 

Counting the number of pixels in the above halftone will yield 
1638 pixels (10%) of each of Magenta and Cyan and the remaining 

pixels left blank (80%). While Fig. 3 clearly is not a desirable half-
tone it satisfies the constraint of having distributed the relative area 
coverages of the NPac. 

 
Fig. 3: A halftoned patch of a constant NPac of 80% blank me-

dia, 10% of one drop of magenta and 10% of one drop of cyan over 
an area of 128 x 128 pixels. 

Another way to think about the example above is the following: 
given a (sufficiently large) area of a constant NPac such as that 
shown in Fig. 3, its halftone should have the following property: The 
likelihood of picking one of the NPs from the NPac of the area is 
equal to the area coverage of the input NPac. 

In other words, if we uniformly randomly sampled locations of 
the halftone in Figure 1 we would have an 80% chance of picking a 
blank location, a 10% chance of picking a one drop of cyan ink pixel 
etc. Nonetheless, Fig. 3 does not have another important attribute of 
halftoning, which is a uniform spatial distribution of the NPs, in-
stead, it simply clustered and ordered all states sequentially. 

Since this is a probability distribution, a simple way to have a 
more uniform distribution is to simply generate uniformly distrib-
uted random numbers, using a standard random number generator 
and scaling them to a range of 0 to 100. Then, depending on the 
randomly generated value a different NP is chosen from the NPac, 
proportionally to its probability or area coverage. To simplify this 
selection the NPac can be expressed cumulatively such that the 
NPac: 

[Blank 80%, 1 drop Magenta 10%, 1 drop Cyan 10%] 
becomes 
[Blank 80%, 1 drop Magenta 90%, 1 drop Cyan 100%] 
which in turn defines intervals for each of the states such that [0 

to 80] corresponds to the Blank state, [80 to 90] to one drop of Ma-
genta and [90 to 100] to one drop of Cyan. Given this representation, 
the random numbers generated then simply need to be categorized 
according to the intervals. If a random number at [x, y] is in the 
range [0 to 80] it is left blank, if it is in the range [80 to 90] a one 
drop of Magenta NP is placed and if the random number is in the 
interval [90 to 100] a Cyan drop NP is placed. The diagram below 
shows this process for four random values (corresponding to four [x, 
y] locations): 

 
Fig. 4: Uniform random numbers used to halftone the same 

NPac as shown in Fig. 1. 
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And Fig. 5 below shows the result of applying this process based 
on a uniform random number generator: 

 
Fig. 5: Uniform random numbers used to halftone the same 

NPac as shown in Fig. 3. 
The halftone shown in Fig. 5 still satisfies the condition of plac-

ing the correct number of each of the constituent NPs of the NPac 
over the patch, however, it distributes the states more evenly than 
the naïve, sequential placement in Fig. 3. In halftoning literature the 
type of pattern shown in Fig. 5 is often referred to as white noise 
(Lau et al., 1998), due to the uniform random nature of the place-
ment. 

While these random numbers can be generated on-line, inde-
pendently for each [x,y] location, doing so means there is no con-
sideration over the overall resulting halftone pattern. And while Fig. 
5 is significantly better than Fig. 3 in terms of how evenly the NPs 
are placed, clearly the pattern is noisy and would result in a grainy 
print. This can further be seen in Fig. 6 (left) which shows all half-
tone values (the random values used as selectors in the above pro-
cess) over the 128 x 128 pixel area. 

 
Fig. 6: A grayscale visualization of the uniform random num-

bers used to produce the halftone in Fig. 5 (left) and of an ordered, 
sequential choice of values used for the halftone in Fig. 3 (right). 

Note that the halftone in Fig. 3 can also be thought of as corre-
sponding to a matrix of halftone values and Fig. 6 (right) shows this 
matrix in grayscale terms as well. 

 
The values in Fig. 6 are exactly the same 128x128 grayscale val-

ues, except they are placed differently – in one case in a uniform 
random manner and in the other case simply sorted by grayscale 
value and placed sequentially. 

An important property of PARAWACS halftoning can be seen 
here already: the spatial nature of the values used in the selection of 
NPs from the NPac is directly translated in the halftone. Hence Fig. 
6 can be thought of as halftone matrices that can be applied to any 
NPac or any content. There is a rich body of literature in the field of 
designing such halftone matrices, even if in a different context. For 
the case of dispersed-dot halftoning, an example of blue-noise ma-
trix generation is the void-and cluster algorithm (Ulichney, 1993). 
An example of clustered-dot halftoning where clusters are built on 

blue noise centers is refered to green noise (Lau et al., 1998). Figs. 
7 and 8 show an example of the blue and green noise arrangements 
– both the halftone matrices as well as the result when applied to the 
same constant NPac patch as shown in Figs. 3 and 5. 

 
Fig. 7: A blue noise halftone matrix (left) and the resulting half-

tone (right). 

 
Fig. 8: A green noise halftone matrix (left) and the resulting 

halftone (right). 
Recall that all the above halftones share the property of having 

the same number of pixels left blank (80%), the same number of 
pixels occupied by one drop of Magenta (10%) and the same number 
of pixels occupied by one drop of Cyan (10%), but they differ in the 
spatial arrangement of the halftone values (the halftone matrix). 
Hence the above halftone matrices will have the property of having 
a uniform probability of each of the gray-scale values: e.g. using an 
encoding of [0 to 255] for the grayscale values there will be 
(128*128)/255 pixels of each of the 255 values in the matrix. 

Both the precision at which area coverages are encoded (i.e. the 
% values of the NPac), the precision at which the values of the half-
tone matrix (or random numbers for the white-noise case) are gen-
erated as well as the patch size over which an NPac is constant 
determine the accuracy with which an input NPac can be repro-
duced. 

Another parameter that influences the final halftone pattern is 
that of the order of NPs in an NPac, based on which the cumulative 
distribution is built. Whether blank substrate is first or last deter-
mines which values of the halftone matrix get used for its pattern 
and while in a white-noise matrix this may not matter much since all 
values are equally white-noise, once a specifically designed halftone 
matrix is used the difference can be significant. A simple example 
is shown below where the same green-noise matrix is used as in Fig. 
8, except reordering the NPs in reverse order (one drop of cyan first, 
then one drop of magenta and finally blank substrate). 

Notice the difference between Fig. 8 (right) and Fig. 9 where the 
blank media in one case is the surround of the clusters, while in the 
other case it is at the center of the clusters. 

Another important property of this approach of halftoning, 
which acts by means of selecting NPs from a predetermined list, and 
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selects them according to a predetermined probability is that, by def-
inition, no NP that is not in the NPac can be placed in the halftone. 
While this may seem obvious, it certainly is not the case in tradi-
tional ink-channel based halftoning where the ink-recipe only deter-
mines ink quantities and it is left up to halftoning to determine how 
to place each drop of each of the inks individually without full con-
trol over whether to place drops on top of each other (dot-on-dot 
printing or overprinting) or whether to place them next to each other 
(dot-off-dot printing or side-by-side printing). What this means that 
secondaries, such as one drop of Cyan and one drop of Magenta 
placed at the same [x, y] location is an indirect consequence of half-
toning. This is both true for traditional matrix-based halftoning and 
error-diffusion since both act in ink-channels. While it is possible to 
correlate (or de-correlate) ink channels and therefore favor over-
printing (or side-by-side printing) the level of control is indirect 
(overprinting would occur after a certain amount of drops has been 
placed) and global, meaning that it is not possible to have a pipeline 
that for some colors uses exclusively overprinting NPs, while for 
other colors uses exclusively a combination of two single-ink NPs 
(i.e. side-by-side printing). In a HANS domain and with 
PARAWACS halftoning, instead, access to all possible NPs and all 
their possible probability distributions (NPacs) is possible concur-
rently in a single pipeline and is guaranteed to be maintained in the 
halftone. 

 
Fig. 9: A green noise halftone using the same halftone matrix 

from Fig. 8 (right), changing the order of NPs in the NPac. 
A consequence of the above property is the potential for better 

color accuracy both at single NPac level since halftoning is deter-
ministic and predictable, as well as better behavior between nodes 
(combinations of NPacs) since transitioning in the HANS domain 
remains closed in terms of the constituent NPacs (an NPac that is 
half-way between two NPacs will have 50% probabilities from each 
of the two NPacs). 

While in the examples used to illustrate the halftoning mecha-
nism a square patch has been used, this probabilistic understanding 
of NPacs and their halftoning also applies at a single pixel. As is the 
case in general image content, every pixel of an input image can 
vary in terms of its RGBs and therefore once a HANS color separa-
tion is applied, can have a different NPac.  Hence NPacs are better 
thought of as a probabilities rather than a recipes since at any one 
pixel a single NP needs to be selected from among the constituent 
NPs of the NPac. Having image content expressed as an array of 
such probability distributions at each pixel, converting the array 
from NPacs to NPs – i.e. halftoning – is therefore by definition a 
problem of sampling probability distributions, just the same as in the 
case of the constant NPac over some area. Note again that this is 
analogous to traditional, ink-channel based domain. Here, the ink-
channel recipes at each pixel that a color separation determines are, 
in effect, probability distributions of the respective inks too, except 
in a domain that is not directly related to NPs but where halftoning 

determines states in each ink-channel and it’s their union that indi-
rectly determines the NP to be placed at that location. 

Finally, to illustrate the halftoning algorithm on more complex 
content a 1024x1024 pixel image is shown in Fig. 10 halftoned using 
three different halftone matrices described earlier (white, blue and 
green noise) and a constant NP-ordering (light-to-dark) that has 
been found to be most pleasing for image content. 

 
Fig. 10: An 1024x1024 image halftoned using three different half-
tone matrices: white noise (top), blue noise (middle), green noise 
(bottom). 

Plane dependence 
Plane dependence refers to the halftone patterns of multiple col-

orants being such that the placement of one colorant informs the 
placement of another so that the combined spatial structure of the 
halftones of multiple colorants is independent what colorants con-
stitute it. If there is no plane dependence, the placement of one col-
orants is unaware of the placement of others and interference may 
result. Instead, if there is full plane dependence, then the combined 
halftone patterns of multiple colorants is like the pattern that would 
be obtained if only a single colorant were used and that would there-
fore have the desired spatial properties. 

To test the plane dependence of PARAWACS, a simple, two-
ink, cyan and magenta system will be used and the aim will be to 
get 20% C and 20% M coverage and compare it to a 40% C-only 
coverage. Therefore, two patches will be halftoned in each case: 
one, where each pixel contains the following NPac: [w=60%, 
c=40%] and the other where the NPac at each pixel is [w=60%, 
C=20%, M=20%]. 

Using PARAWACS, the choice of NP at a pixel (from among 
the non-zero NPs specified for it in the input) is driven by a thresh-
old matrix, whose value for that pixel is compared to the cumulative 
area coverage vector at that same pixel. I.e., here we take the above 
NPacs and re-express them cumulatively as [w=60%, C=100%] and 
[w=60%, C=80%, M=100%]. In other words, we look at how much 
area us covered by all NPs up to and including a given NP (which 
implies a fixed ordering of NPs). Then, if the current cumulative 
value is greater than or equal the threshold value, the corresponding 
NP is chosen. 

Fig. 11 then shows first the C-only result and then the C and M 
result, followed by a 64x64 detail and its B&W version of the two 
patterns. From here it can be seen that the two are identical (which 
is confirmed from subtracting the two images from each other, 
which yields a zero image). 

The reason for this identity between the W patterns in the C ver-
sus C and M cases is inherent in the nature of PARAWACS where 
a cumulative NP probability can be thought of as intersecting a 
threshold matrix and the cumulative probability values serving as 
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break-points. Given a threshold matrix, it is the cumulative value 
(e.g. 40%), regardless of it’s underlying granularity (how many NPs 
add up to 40%), that solely determines the resulting halftone pattern. 
In the above case of [w=60%, C=100%] and [w=60%, C=80%, 
M=100%] the cumulative value is the same at 60% for blank media, 
hence all values from the threshold matrix that go up until and in-
cluding 60% - a value of 153 on an 8bit range - will be left blank 
since they correspond to the blank substrate NP. The only difference 
is that in the [w=60%, C=100%] case, all values from [154 to 255] 
will contain the NP of one drop of Cyan, while in the case of 
[w=60%, C=80%, M=100%] values from [154 to 204] will be Cyan 
while [205 to 255] will be Magenta. However, in this second case 
too, non-blank NPs are placed at all values between [154 and 255] 
as before, thus resulting in the same pattern. So, all NPacs that have 
X% of blank substrate specified (assuming order is maintained and 
w is always the first NP) will have the same patterns with respect to 
blank. More generally still, any NPacs that have X% of NP Y will 
have the same patterns with respect to NP Y (assuming NP Y is ei-
ther first or last in order). 

 
Fig. 11: 40% cyan versus 20% cyan plus 20% magenta PARAWACS half-
tones. 

For comparison, Fig. 12 shows the same NPacs error-diffused. 
As can be seen, the combined C and M pattern no longer matches 
the C-only pattern, but (and this is a consequence of HANS) there 
are no CM overprints as only C and M NPs were specified by the 
separation. The reason for there not being a strict match is twofold: 
first, there is an element of randomness in the error diffusion shown 
above and second, even when that randomness is turned off (and a 
more unpleasant pattern results) there is no match, since the error 

for the non-blank part of the pattern is in one case split between two 
other NPs (C and M) while in the other case it belongs all to one NP 
(C) and therefore has different ‘granularity.’ E.g., let's take the case 
of [C=20, M=20, w=60]. Here the first NP is blank and we propagate 
an error of [20 20 -40]. For the pixel to the right, its NPac will be 
the scaled error (7/16)*[20 20 -40] + [20 20 60] which is [28.75 
28.75 42.5] and we place w again. Now take the other NPac: [C=40, 
w=60]: the first NP is w and we propagate an error of [40 -40]. The 
pixel to the right’s NPac will be the scaled error (7/16)*[40 -40] + 
[40 60] which is [57.5 42.5] and we place C. The remainder after 
blank grows more quickly when applied to a single NP than than if 
it is split between two. 

 
Fig. 12: 40% cyan versus 20% cyan plus 20% magenta error-diffused half-
tones. 

Security Printing 
As has been shown, PARAWACS preserves patterns character-

istic of the halftone matrix and does so independently of the NPacs, 
their composition (which NPs are used at what coverage) or com-
plexity (how many different NPs are used), being halftoned. This 
follows directly from the halftoning algorithm described earlier, 
which uses the halftone matrix as a point-wise selector of device 
states or NPs. These properties lend themselves naturally to security 
printing in the form of inducing intentional structure into the con-
tent. The goal of doing so may include an implementation of covert 
or overt watermarking, data embedding, authentication, tracking, 
anti-counterfeiting, etc.. As security features, modifications of half-
tone structure offer a convenient blend of fragility to counterfeit pro-
duction processes and reliability of detection. 
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The PARAWACS approach offers some advantages over other 
security printing techniques.  While watermarking for print is more 
commonly performed on continuous tone data (Kacker et al., 2003), 
the idea to manipulate halftones directly in order to embed unique 
patterns has been explored before (see Chiang et al. 2009 for a sur-
vey of such methods). However, these methods typically operate on 
binary (black and white) halftones and are not suitable to extend to 
full color content directly. They also often involve content-depend-
ent processing or post-processing of the conventionally halftoned 
content. Instead, what is novel to the PARAWACS approach is that 
no image-dependent manipulation or post-processing occurs; in-
stead, the halftone matrix itself is modified with a particular spatial 
pattern and, once modified, it is used in the same way as shown ear-
lier (with white, green, blue noise or any other halftone matrix).  
Thus the approach extends naturally to full color content. It can also 
be applied to any image content, unlike binary or post-processing 
techniques which typically only apply to dedicated regions of an im-
age (and therefore indirectly indicate the content that is intended to 
be a covert pattern). 

An illustrative example is formed motivated by methods in the 
literature that operate via modifying halftone patterns. Stegatones, 
for instance, replace windows of a halftone with carefully chosen, 
rearranged versions of the contents of the same window (Ulichney 
et al. 2010). For clarity, a simpler modification is used here, applied 
directly to the halftone matrix:  values within NxM windows of the 
halftone matrix values are rearranged into ascending order. This 
method clearly modifies the spatial characteristics of the halftone 
matrix, without affecting the frequency of each halftone value, thus 
maintaining the basic constraint of a halftone matrix and only alter-
ing its local spatial arrangement.  

For a given blue-noise matrix, and modification window sizes 
of 2x2 and 8x1, the locally-sorted halftone matrices are shown in 
Fig. 13.  Applications of these matrices to a test photograph in Fig. 
10 are in Fig. 14.  Note that the more pronounced the patterning, 
from the 8x1 windowing with the simplistic sorting operation, re-
sults in a more visible impact on the image quality while the 2x2 
windowed version differs less visually from the default blue noise 
version in Fig. 10 while still having a significantly different micro-
structure. Clearly, it is possible to induce different spatial behaviors 
by shifting halftone values around, which in turn results in detecta-
ble and even visible alterations of an image. 

The examples illustrate that a spatial modification of an existing 
halftone matrix, or a custom design of one which still satisfy the 
constraints of a valid halftone matrix (such as having uniform fre-
quency of each of the halftone values), is directly applicable for half-
tone-independent, full color content. Much of the work done in 
literature on pattern embedding or watermarking at halftone level 
can be leveraged in this context, by building halftone matrices for 
PARAWACS that have properties like those of the final, binary 
halftones using traditional methods. Note the degree to which the 
embedded pattern will transmit to a halftone is variable, since no 
particular region of an input image needs to be dedicated as pattern-
bearing region, although this, too, is possible with the proposed ap-
proach.  Detection schemes may thus operate on larger image re-
gions or involve continuous capture to sample appropriate content. 

Conclusions 
Color halftoning impacts many aspects of a print, such as grain, 

smoothness and color itself. A novel, predictable, deterministic al-
gorithm was described that has been shown to give a great degree of 
control over the final output patterns and is well behaved in that for 

different content that shares the overall coverage, the halftone pat-
tern is provably constant. As a result, it is also well suited for appli-
cations such as security printing for watermarking or data carrying. 

An important consequence of PARAWACS is that there are 
more and more important choices to be made when designing half-
tone matrices, since their result directly impacts the final print, un-
like in other matrix based halftoning approaches where the impact 
is less immediate. Any research into visually pleasing or particular 
behavior exhibiting patterns can directly be applied, making 
PARAWACS a uniquely flexible approach. 

 

  
Fig. 13: Locally sorted halftone matrices based on the blue noise matrix in Fig. 
7 (left) using a windowing operation of 2x2 (left) and 8x1 (right). 

  
Fig. 14: Test image halftoned using the two modified halftone matrices from 
Fig. 13 with windowing operations of 2x2 (left) and 8x1 (right). A 32x32 pixel 
corner is enlarged by 10x to see the detail. 
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