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Abstract
Motivated by the visual appearance of spatially denoised

video sequences, we study the visibility of dynamic (temporal)
noise. We investigate the visibility of noise for different spatial
frequency bands. We conduct a subjective test with 22 observers.
Included are two types of test patterns in the test: static (spa-
tial) noise patterns and dynamic (spatiotemporal) noise. Eight
spatial frequency bands are used for each pattern type. We ob-
tain two main results: First, the contrast sensitivity of spatially
low-frequency noise is significantly higher with temporal varia-
tion. Second, the noise visibility also depends on the content of
the image or video. As the noise is masked by the content of the
image, it becomes less perceivable. As higher frame rate might
be used in future, a second test was performed comparing 24fps
and 48 fps. Results show that the noise visibility is very similar.
The significant increase of visibility with the temporal variation
of spatially low-frequency noise should be respected in the design
of future video processing methods.

Introduction
Noise is an unavoidable effect in real-world captured video

sequences. Especially in low-light conditions it can seriously re-
duce the visual quality of video data. With today’s high resolution
sensors, having a smaller pixel pitch the need for algorithmic so-
lutions is prominent.

In this work, we study the visibility of noise. Our motiva-
tion originates from observations in motion picture denoising. An
extensive set of denoising methods was developed to reduce the
noise in image and video data after capture. Of course none of the
methods can perfectly reconstruct the true image, an estimation
error always remains. The challenge is to hide this estimation er-
ror as good as possible. We observed that this estimation error is
especially severe, when a spatial image denoising method is ap-
plied to video data. The estimation error, or remaining noise, in
this case is usually very low-frequency noise. This low-frequency
noise is not visible in still images, due to the fall-off in the contrast
sensitivity for low spatial frequencies.

If the images are part of a video sequence, this low-frequency
noise reappears as flickering in the video sequences and this effect
is very disturbing. As the noise in the low-frequency bands is very
difficult to separate from real image content this is still a common
quality issue in video denoising.

While temporal denoising methods can better reduce flicker-
ing, they can introduce new artifacts, especially motion artifacts,
and they come with high computational cost, especially memory
requirements are extremely high for the current high resolution
data (4k and beyond).

To the best of our knowledge no study is available that gives
details about the visibility of noise in video sequences depending

on the spectral distribution of the digital video noise. Winkler
and Süsstrunk[33] presented a subjective study examining noise
visibility in still images. Besides white noise, they also used mid-
frequency noise and high-frequency noise. The results show the
lower noise visibility for the high-frequency noise compared to
the mid-frequency noise, as it would be expected from the contrast
sensitivity function. We expect that the same effect could have
been shown for low-frequency noise, as the contrast sensitivity
also falls off towards low frequencies. Unfortunately this has not
been subject of study.

To obtain more detailed information about noise visibility,
we study the visibility of noise for eight different frequency bands
in this paper. We evaluate both the visibility of static noise, as it
occurs in still images, and dynamic noise, as it is present in video
data. We start with giving a short overview on the literature about
spatial and temporal contrast sensitivity of human vision. We then
describe our approach: We explain how we obtain the different
noise patterns, which can be displayed on a standard monitor. The
results of a test with 22 observers for a static noise pattern and a
dynamic (spatiotemporal) noise are subsequently presented. We
discuss and compare our results of this test. Subsequently, we
present an additional test, allowing us to compare the noise vis-
ibility for a standard frame rate (24fps) and a higher frame rate
(48fps). Finally we conclude in the last section.

Related Work
Early technical achievements like movies and discharge

lamps provoked early experiments on temporal effects of human
vision. Temporal contrast sensitivity and explaining the effects
using Fourier analysis was already studied almost sixty years
ago, by de Lange ([2, 3, 4, 5, 6]), Kelly ([15, 17]) and Roufs
([26, 27, 28, 29, 30]). An overview of the early experiments is
given by Kelly in 1977 [19].

The first measurements for combined spatiotemporal sensi-
tivity were presented by Robson in 1966 [25]. He determined the
thresholds for four spatial frequencies and for four temporal fre-
quencies. The lowest frequency was 1 Hz, which is considered
to be equivalent to static results (Van Nes result’s [31] indicate
thresholds a little bit above 0 Hz). While the spatial CSF mea-
sured for static patterns shows a band-pass characteristic, the sen-
sitivity function for the same spatial frequencies, measured with
spatial patterns that are temporally varying, is a low pass. The
spatiotemporal contrast sensitivity is hence not separable, it shows
a clearly more complicated shape than could be obtained by the
product of spatial and temporal CSFs and Kelly in 1966 men-
tioned effects not explainable by a separable model [16]. He mea-
sured the CSF for spatiotemporal stimuli (travelling waves) [20]
and the results are similar to Robson’s: for 2 Hz the band-pass
shape holds, the frequencies 13.5 Hz, 17 Hz and 23 Hz suggest a
low pass structure; Chromatic CSF curves in [18, 21].
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The experiments for CSF measurements are conducted with
sine waves. While this has become the standard procedure to mea-
sure CSF curves, we, in this paper, want to evaluate the sensitivity
to noise of different spatial frequencies, as it can occur in video
sequences. Thus, our test setup is not directly comparable to for-
mer CSF measurements.

Some studies examined the visibility of signals when noise
is added [8, 9, 1]. However, for the application of video quality
assessment and denoising evaluation, it is more important to study
the visibility of the noise.

Most applications that use spatiotemporal CSF models still
rely on this data, e.g. the perceptual quality metric by Winkler
[32]; other perception-based metrics are designed for still images
and therefore only rely on the spatial CSF , e.g. [23, 14] and
the image difference metric by Perdersen [24]. Nadenau et. al
included a masking model for perception-based image compres-
sion, however, the algorithm is designed for stilll images and not
for video [22].

A masking experiment was conducted by Winkler and
Ssstrunk; they measured noise visibility on 30 test images. The
visibility of noise in natural images was evaluated for three types
of noise: white noise and two bandpass noise patterns of medium
and high frequency bands [33]. Their work provides details for
noise visibility in still images, but this type of experiment is still
missing for temporal noise.

Noise visibility test
We investigate the visibility of noise of different spatial fre-

quency bands in still images and in video sequences (we use 24
fps video sequences). To that end, we conduct a subjective test.
Since the content of the background image may have a significant
impact on noise perception, we select a homogeneous grey se-
quence and a rotating rose sequence. Both are displayed in Fig.1.
We include two types of test patterns in the test: static (spatial)
noise patterns and dynamic (spatiotemporal) noise patterns. Eight
spatial frequency bands were used for each pattern type.

(a) Homogeneous grey image (b) One frame from the rotating
flower sequence

Figure 1: Chosen sequences for the experiment.

Test pattern generation
The test patterns were obtained by first generating white

noise and subsequent band-pass filtering, which is done by cut-
ting the desired frequency band in the Fourier domain. To test the
perception of luminance noise, we used the IPT color space and
added the noise to the luminance channel (I channel). IPT is an
opponent color space that was developed by Ebner and Fairchild
[7] to create a space that is perceptually uniform. The transforma-
tion includes the monitor model (gamma transformation).

The workflow for the noise pattern generation is shown in
Fig. 2 and described in the following.

1. First, 2-D zero-mean white noise is generated by Matlab’s
randn-function.

2. The noise is transformed to the Fourier domain and a band-
pass filter is used to cut a defined band from the spectrum.

3. Each pixel row of the image is multiplied by a factor that
increases logarithmically from top to bottom, to obtain noise
with increasing variance (i.e. contrast).

4. A uniform grey image, with a constant pixel value of 0.6104
(in range [0-1]) is generated in sRGB space.

5. The grey image is transformed to the IPT space.
6. The zero-mean noise is finally added to one of the channels

of the IPT image.
7. The noisy image is transformed back to sRGB.
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Figure 2: Workflow for generating the test stimuli for the noise
sensitivity experiments.

The static noise patterns correspond to the noise in still im-
ages while the dynamic noise patterns correspond to the noise in
video sequences. For the dynamic noise measurements we gener-
ated 360 static noise patterns, which are displayed as a sequence
with 24 frames per second in the dynamic noise experiments.

For each frequency band one sequence is generated. We did
the measurements for eight frequency bands between 0.14 and
27.62 cpd. Table 1 shows the frequency bands of the noise test
patterns.

Table 1: The frequency bands used in the test are given in pixels
per period and cycles per degree (cpd).

Nr. of pixels per sine period Spatial frequency in cpd
range mean range mean
182.4 - 403.93 293.17 0.14 - 0.31 0.23
91.2 - 182.4 136.81 0.31 - 0.62 0.47
45.6 - 91.2 68.41 0.62 - 1.24 0.93
22.8 - 45.6 34.20 1.24 - 2.48 1.86
10.9 - 22.8 16.86 2.48 - 5.18 3.83
5.4 - 10.9 8.19 5.18 - 10.36 7.77
2.7 - 5.4 4.09 10.36 - 20.7 15.53
2.0 - 2.7 2.38 20.7 - 27.62 24.16
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Test session
We conduct a subjective test to find out the noise level at

which noise is visible in a digital video. The experiment is divided
in four test parts:

• Uniform grey image sequence with static noise patterns.
• Static rose image sequence with static noise patterns.
• Uniform grey image sequence with dynamic noise patterns.
• Rotating rose image sequence with dynamic noise patterns.

The noise level in each sequence is gradually increasing for
each frame and each sequence lasts 15 seconds. We include num-
bers into the frames corresponding to the duration from 1 to 15
seconds.

(a) First frame from a sequence (b) Last frame from a sequence

Figure 3: The visibility of noise on first and last step.

Before starting the experiment a short test for visual acuity
and color blindness was conducted, for visual acuity the ”tum-
bling E” chart and for color blindness the Ishihara plates were
used. After this test, written and oral instructions were provided.
Additionally one dummy sequence was presented as a demonstra-
tion and the distance between the observers and the screen was
corrected. The participants of the test watch the sequences and
observe at which second the noise first becomes visible. The ob-
servers were free to choose where to look at, because this is the
realistic use case for video viewing.

Each sequence is repeated once to let the participant get a
more precise observation. Between those repetitions there is a
short break (three seconds) during which noiseless grey sequence
with the text ”Repeating...” is displayed. In order to avoid leav-
ing an afterimage the text is placed in the bottom-right corner of
image. In addition, there is another break lasting ten seconds be-
fore every new noise type, allowing the participants to write down
their observation and preventing the noisy afterimage from dam-
aging the vision of the next sequence. Furthermore we added a
progress bar and the number of the next sequence into this break
sequence to make sure the observer does not miss the beginning
of the new noise type. Thus, for each frequency band the observer
will watch a test sequence of duration 43 seconds (10s + 15s + 3s
+ 15s). There are eight frequency bands for static and dynamic
noise types, a total of 32 test sequences.

According to the ITU-R recommendations for the subjective
assessment of quality of television pictures [11], visual experi-
ments should not last more than 30 minutes, since the experiment
can be very tiring. In addition, at the beginning of the each test
part about three training presentations should be introduced to sta-
bilize the observer’s opinion.

We introduce two training sequences at the beginning of each
test part and each sequence is repeated once. Between the first
play and the repetition there is a short break of three seconds. Af-
ter the repetition there is a break lasting ten seconds before the

next noise type, allowing the participants to have enough reaction
time. Considering the training sequences one test part lasts about
seven minutes, therefore the complete experiment lasts approxi-
mately 28 minutes.

Furthermore a random order was used for the presentations
in order to eliminate contextual effects.

Test setup settings
The experiment was conducted in the video quality evalua-

tion laboratory of the Institute for Data Processing at the Techni-
cal University of Munich in a room compliant with recommenda-
tion ITU-R BT.500 [11]. The tests where done with a professional
broadcast monitor (Sony BVM-L230) set to ITU-R BT.709 color
space. The monitor has a 10 bit serial-digital interface (SDI). The
images used for the experiment had a resolution of 1920 x 1080
pixels.

According to the ITU-R recommendations BT.2022 [10] the
distance between the screen and the observers should be about
three times the picture height for full HD data in BT.709 [12] color
space. The height of the reference display is 30 cm, therefore the
distance used in the experiment was 90 cm.

Additionally the contrast of the display should be adjusted
using a photometer. The display luminance value was 70 cd/m2,
according to the ITU-R BT.814 recommendation [13]. The ra-
tio of background luminance behind the monitor to peak lumi-
nance of the picture was around 0.15, as recommended by ITU-R
BT.500 [11].

Results
As the peak signal-to-noise ratio (PSNR) is a widely used

metric in video applications, we use threshold PSNR levels to il-
lustrate our results. We calculate the average PSNR value for each
step (15 steps corresponds to 15 seconds). After that, we equate
each observer’s input for each sequence with the corresponding
step’s PSNR value.

Based on the inputs of 22 observers, we calculate the average
PSNR and compare the visibility of static and dynamic noise on
uniform and natural (content) images. We additionally plotted
error bars indicating the standard deviation of the results.
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Figure 4: Result of the test with the static noise patterns, error
bars show the standard deviation of the results.
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Figure 5: Result of the test with the dynamic noise, which is a
sequence of newly generated static noise patterns with 24 frames
per second. Error bars show the standard deviation of the results.

Fig. 4 shows the curves of the PSNR threshold for the eight
spatial frequencies used in the experiment. The observed sensi-
tivity in grey images shows a peak in the mid frequency 1.86 cpd
and in content image in the mid frequency 3.83 cpd. Both curves
show bandpass characteristics. There is, however, a significant
difference between both curves, in natural (content) images the
threshold level of noise visibility is much lower than in the homo-
geneous grey image sequences. This discrepancy between noise
visibility in natural and uniform image sequences can also be ob-
served in the results for visibility of dynamic noise.

The results for the dynamic noise, shown in Fig. 5, are signif-
icantly different from the static noise. Both curves show a rather
lowpass shape than a bandpass. The peak is at lower spatial fre-
quencies for both sensitivity curves. We see a smooth peak at 0.93
cpd for the grey sequences and a peak at 0.47 cpd for the flower
sequences.

Discussion

Comparison of static and dynamic noise visibility
First, we will discuss the test results for static and dynamic

noise visibility in grey and flower test parts.
The results for all four test parts are shown in Fig. 6. As al-

ready described the visibility curves of dynamic and static noise
are significantly different, for the grey images as well as for the
rose images. The threshold level of noise visibility for the con-
tent images is much lower compared to the plain grey images.
This confirms that the content is masking the noise, this means
that noise is significantly less perceivable depending on the back-
ground it is applied on. We conclude that noise is more perceiv-
able in the uniform image sequences than in the natural image
sequences.

Comparing the visibility of static and dynamic noise we ob-
serve that low-frequency noise is more perceivable when the noise
is dynamic, as in video sequences. This difference is significant
for the uniform image, but it is considerably larger in content im-
age sequences. This means our results can be expected to be very
relevant for real video processing applications.
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Figure 6: Comparison of test results for dynamic and static noise
in grey and content sequences.

Comparison of test results to the contrast sensi-
tivity function

Due to the clear fall-off of the temporal contrast sensitivity
above 10 Hz (Robson [25] and Kelly [20]), a flickering grating
displayed at 24 Hz should lead to lower sensitivity than a static
pattern. However, our results for the dynamic noise show the
higher sensitivity, hence the contrary. In Fig. 7 and Fig. 8 we re-
plotted our previously shown results in linear luminance to make
them better comparable to other publications. The contrast is cal-
culated using RMS contrast, i.e. the standard deviation.

First, we will discuss the results of the homogeneous grey
test part in Fig. 7. In the low frequency range from 0.23 cpd to
0.93 cpd the sensitivity is higher for dynamic noise compared to
static noise. This matches the severe differences we see in the vi-
sual quality of spatial denoising algorithms when they are applied
to motion picture data compared to their application on still im-
ages. In the mid and high frequency bands from 1.86 cpd to 24.16
cpd the sensitivity to the dynamic noise is lower than to the spatial
noise, but the difference is not large.

Whereas grey background allows study of noise visibility
without influence of image content, the question of noise visibility
in real world video sequences is even more relevant for practical
applications.

Fig. 8 shows the contrast sensitivity in the XYZ color space
for the flower test part. We observe that the absolute values of
contrast sensitivity function in the flower images are lower com-
pared to the contrast sensitivity function in the grey images.

In the low and mid-frequency range from 0.23 cpd to 7.77
cpd the sensitivity is clearly higher for dynamic noise compared
to static noise. As for the grey sequences, this matches the severe
differences in the visual quality of spatial denoising algorithms
when they are applied to motion picture data compared to their
application on still images. In the high frequency bands around
15.53 cpd and 24.16 cpd the sensitivity to the dynamic noise is
lower than to the spatial noise, the difference gets larger for the
highest spatial frequency.

The main result, that the low-frequency band noise is clearly
more visible in the dynamic noise test, matches our visual impres-
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Figure 7: The contrast sensitivity was calculated in XYZ color
space for better comparison with other results. Plotted here, is the
contrast sensitivity of luminance noise (Y-channel) results of the
static and dynamic noise patterns in grey images.
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Figure 8: Constrast sensitivity of luminance noise (Y-channel)
results of the static and dynamic noise patterns in flower images.

sion, which is that the dynamic noise intensity seems to increase
towards lower spatial frequencies.

Our findings show the significant differences in noise visi-
bility from still to video data, which up to now are not respected
in video processing algorithms as denoising, or video quality as-
sessment. While our findings show a tendency that might explain
quality issues and help improving some of the image processing
algorithms for video data, a detailed model would be needed to
include precise noise visibility information for perception based
video processing algorithms. This would require more tests and a
more detailed study on spatiotemporal masking, which is beyond
the scope of this paper.

Video frame rate
In future, motion-picture frame rates might be higher than 24

fps. We therefore performed an additional experiment evaluating
the difference in noise visibility of 24 fps and 48 fps sequences.

We used the same test setup as described above. As the
video frame rate could not be switched during the experiment,
we displayed the complete test in 48 fps. The 24 fps content was

low48fps mid48fps high48fps low24fps mid24fps high24fps
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Figure 9: Comparison of test results for dynamic noise in grey
and content sequences displayed with 24 fps and 48fps. Three
frequency bands were used: ”low” corresponds to 0.5 cpd, ”mid”
corresponds to 8.35 cpd and ”high” corresponds to 26.25 cpd.

simulated using a 48 fps sequence showing the exact same im-
age twice. A different monitor had to be used to display 48 fps
sequences in full HD resolution (EIZO CG318-4K). The moni-
tor was calibrated before the experiment and the luminance levels
were measured in order to meet the requirements described above.
To reduce the length of the test, this time three spatial frequencies
for the noise were selected (low, mid and high). 20 observers
completed the test.

Fig. 9 shows the results. For all three frequencies the noise
visibility is very similar for 48 fps and 24 fps sequences. The
noise visibility hence does not decrease significantly with higher
frame rates than 24 fps. As stated in the introduction, higher res-
olution of image sensors lead to higher noise, because less light
is trapped by the sensor. As higher frame rates require shorter
exposure time, this additionally reduces the light trapped by one
pixel, and hence increases noise. Therefore we can conclude that
noise will continue to limit video quality in high resolution and
high frame rate video data shot in low light conditions.

Conclusion
We measured the visibility of noise for static (spatial) noise,

which occurs in still images, and for dynamic (temporal) noise,
which occurs in video data. We obtain three main results.

First, the contrast sensitivity of spatially low-frequency noise
is significantly higher when the noise is temporally varying. This
can explain why algorithms designed for still images might not
show high quality results on video data, e.g. denoising algorithms
for still images that do not eliminate low-frequency noise, because
it is not visible in still images.

Second, we showed that the noise visibility strongly depends
on the image or video content. Our results show that the noise is
significantly more perceivable in uniform images than in natural
images, which can be explained by masking. In addition to that,
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the above-mentioned difference between noise visibility of static
and dynamic noise is considerably larger for our natural image
content than for the grey image. That means, that the observed
difference in noise visibility is important to consider for improv-
ing video processing algorithms.

Third, an additional experiment evaluated the influence of
the frame rate on noise visibility by comparing 24 and 48 fps.
The results show that the noise visibility does not decrease signif-
icantly for 48, compared to 24 fps. As stated in the introduction,
higher resolution of image sensors lead to higher noise, because
less light is trapped by the sensor. Higher frame rates require
shorter exposure time, which also reduces the light trapped by
one pixel, and hence increases noise. Therefore we can conclude
that noise will continue to limit video quality in high resolution
and high frame rate video data shot in low light conditions.

Further research on noise visibility is therefore very impor-
tant to allow developing and improving perception-based video
processing algorithms.
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