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Abstract. In this article, the authors present a method for assessing
image quality in stereoscopic images: QUALITAS. The proposed
method is inspired by some features of the human visual system,
such as contrast sensitivity, response to visual disparity and
perception of distance. Individual qualities of the stereo-pair are
not simply averaged. QUALITAS introduces Contrast Band-Pass
Filtering on a wavelet domain in both views; in this way it weights
left and right images perceptually depending on viewing conditions.
The authors have tested the method on the LIVE 3D stereoscopic
image database and compared the results with a wide set of image
quality metrics from current research.

INTRODUCTION
Automatic or semiautomatic stereoscopic image quality
assessment has arisen due to the recent diffusion of a
new generation of stereoscopic technologies and content
demand. However, no universally accepted method for
stereoscopic image quality assessment exists. Considering
all of the methods proposed in the literature, they can be
mainly divided into three blocks, as presented in Figure 1:
objective assessment, subjective assessment and strength of
relationship.

In Fig. 1, we use 3D Coding in order to refer not only
to Stereoscopic Coding but also to any coding that computes
any 3D technology.

Objective assessment can be represented as a subsystem
constituted by the following elements.
(1) Input: left and right images.
(2) Process: automatic assessment of stereoscopic coding

features.
(3) Output: stereoscopic image+ Stereoscopic Image Qual-

ity Assessment (SIQA).
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Figure 1. Block diagram of a general system for stereoscopic image
quality assessment.

Here, the assessment verifies the efficacy of the process,
in terms of quality. Therefore, the main goal of the SIQA
is to measure in the stereoscopic image the quality and/or
degradation of the original stereo-pair. In other words, any
stereoscopic image coder could benefit from the support of
SIQA in assessing its results. Therefore, it is important to
highlight that the growth of SIQA algorithms is related to
the intrinsic requirement to predict the quality in recent
stereoscopic image coders.

Any SIQA algorithm is based on the evaluation of two
or more views of the same scene, and the most of them use
a 2D/Normal Image Quality Assessment (NIQA), in certain
cases with the support of some model of Human Visual
System (HVS) characteristics.

In some cases, basing SIQA onNIQA is straightforward.
In many test scenarios this is not a problem, in particular
where the test images utilized in psychophysical experiments
or subjective assessments1–3 have limited 3D volumes
sometimes built as stages from a set of 2D scenarios.

SIQA algorithms can contribute to the prediction of not
only a quality assessment, in general correlated with HVS
characteristics, but also an estimate of the visual discomfort
of the observer. Therefore, this article is intended not only for
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stereo image quality researchers but also for researchers who
study the visual discomfort or classical NIQA algorithms.

Here, we propose a novel SIQA algorithm, called
QUALITAS, which includes the main features of the HVS.
Regarding its name, the QUALITASmetric involves the joint
work of University of Poitiers (France), National Polytechnic
Institute (Mexico) and University of Milan (Italy). The word
‘‘quality’’ in French, Spanish and Italian is qualité, calidad and
qualità, respectively. These words are similar because they
derive from the Latin word qualitas, hence the name.

This work is arranged in four sections. Qualitas Algo-
rithm describes the work carried out in the field of subjective
and objective stereoscopic image quality assessment. Then,
in Experimental Results, the QUALITAS stereoscopic quality
index is presented. Finally, in Conclusions, the experimental
results are presented and discussed.

STEREOSCOPIC IMAGE QUALITY ASSESSMENTS
Objective Assessments
Themain goal of any stereoscopic image quality assessment is
to predict a subjective response (Fig. 1, green block,Objective
Assessment).

Table I shows 25 stereoscopic metrics from 16 authors
we consider in this article. This set of 25metrics will be called
SIQA-SET henceforth.

It is worth noting that some authors propose more
than one metric, and we maintain their original metric
name. Thus, we will refer to a certain metric by the name
that appears in the corresponding row, not by its author.
SIQA-SET was coded by ourselves in MATLAB.

We divide the SIQA-SET into two groups: the first group
combines features of 2D/normal metrics, while the second
group contains the metrics based on stereoscopic features.
The first group of algorithms can use a generic 2D metric.

Therefore, the classification of SIQA-SET can be as
follows.

Approaches Based on NIQA:
d1, d2, d3, PSNRedge, MSEdp, YouDMOSp and OQ.

Stereoscopic Approaches:
AkMOSp, Ddl1, Qs, Cm, SBLC, ODDM4, MSEms, PQM3D,
Qmao,Qshao, HDPSNR, 3VQM, IQA, SSA, DQmap1, DQmap2,
DQmap3 and ei.

The measures included in the SIQA-SET have been
chosen based on their reported performance. In the sameway
we have collected 29 NIQAs in order to provide a baseline
of normal metrics (NIQA-SET); then we can combine any
of these 29 metrics with approaches of the SIQA-SET based
on normal metrics, namely, d1, d2, d3, PSNRedge, MSEdp,
YouDMOSp and OQ.

In the NIQA-SET we can find Statistical Image Qual-
ity Assessments (St-IQAs), Full-Reference Image Quality
Assessments (FR-IQAs) and No-Reference Image Quality
Assessments (NR-IQAs). The first 12 NIQAs are part of the
MetrixMux toolbox,20 while the rest of the metrics were
collected from their respective authors.

Table I. Stereoscopic image quality assessments.

Algorithm Metric

Akhter et al.4 AkMOSp
Benoit et al.5 d1

d2
d3
Ddl1

Bosc et al.6 Qs
Chen et al.7 Cm
Gorlet et al.8 SBLC
Gu et al.9 ODDM4
Hewage et al.10 PSNRedge
Jin et al.11 MSEms

MSEdp
Joveluro et al.12 PQM3D
Mao et al.13 Qmao
Shao et al.14 Qshao
Shen et al.15 HDPSNR
Solh et al.16 3VQM
Yang et al.17 IQA

SSA
You et al.18 YouDMOSp

OQ
DQmap1
DQmap2
DQmap3

Zhu et al.19 ei

St-IQA, FR-IQA and NR-IQA algorithms are listed for
the sake of completeness, but not treated in this article,
in order to contain its length. The reader can refer to the
respective cited articles.

(1) Mean-Squared Error (MSE, St-IQA).
(2) Peak Signal-to-Noise Ratio (PSNR, St-IQA).
(3) Structural Similarity Index (SSIM, FR-IQA).21

(4) Multiscale SSIM Index (MSSIM, FR-IQA).21

(5) Visual Signal-to-Noise Ratio (VSNR, FR-IQA).22

(6) Visual Information Fidelity (VIF, FR-IQA).23

(7) Pixel-Based VIF (VIFP, FR-IQA).24

(8) Universal Quality Index (UQI, FR-IQA).25

(9) Image Fidelity Criterion (IFC, NR-IQA).26

(10) Noise Quality Measure (NQM, FR-IQA).27

(11) Weighted Signal-to-Noise Ratio (WSNR, FR-IQA).28

(12) Signal-to-Noise Ratio (SNR, St-IQA).
(13) Average Difference (AD, St-IQA).
(14) Maximum Difference (MD, St-IQA).
(15) Normalized Absolute Error (NAE, St-IQA).
(16) Normalized Cross Correlation (NCC, St-IQA).
(17) Structural Content (SC, St-IQA).
(18) Blind Image Quality Index (BIQI, NR-IQA).29
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(19) Blind/Referenceless Image Spatial Quality Evaluator
Index (BRISQUE, NR-IQA).30

(20) Naturalness Image Quality Evaluator (NIQE,
NR-IQA).31

(21) No-Reference Peak Signal-to-Noise Ratio (NR-PSNR,
NR-IQA).32

(22) Perceptual Peak Signal-to-Noise Ratio (P2SNR,
FR-IQA).33

(23) Feature-Similarity (FSIM, FR-IQA).34

(24) Riesz-Transform Feature-Similarity (RFSIM,FR-IQA).35

(25) Peak Signal-to-Noise Ratio with Contrast Sensitivity
Function (PSNRHVSM, FR-IQA).36

(26) JPEG Quality Score (JQS, FR-IQA).37

(27) Practical Image Quality Metric (DCTEX, FR-IQA).38

(28) Most Apparent Distortion (MAD, FR-IQA).39

(29) Perceptual Quality Metric (PQM, FR-IQA).12

Subjective Assessments
In the field of subjective stereoscopic image quality as-
sessment, few image databases have been developed. We
have employed the LIVE 3D stereoscopic image database
of the Laboratory for Image and Video Engineering of the
University of Texas at Austin (USA) proposed by Moorthy
et al.1 LIVE 3D contains standardized psychophysical exper-
iments,40 and the stereoscopic image quality data are based
on observer opinion score, collected with individual quality
judgments (in Fig. 1 the blue block Subjective Assessment). In
each trial, the images are rated on a scale of excellent, good,
fair, poor and bad. Then, by means of statistical procedures,
the data are processed, finally obtaining the mean opinion
scores (MOSs). Each stereoscopic image database applies
different statistical procedures; the reader can refer to the
citation for the details. Additionally, the MOS merges results
of different types in a form that allows the comparison
with any stereoscopic assessmentmetric. Since SIQApredicts
subjective responses, it obtains a predicted MOS or MOSp.

Figure 2 shows the left views of 20 reference images
used in this subjective assessment. On the other hand, we
want to mention its main features. Table II depicts the main
characteristics of LIVE 3D. The distortions for LIVE 3D
are JPEG2000 (JP2K), JPEG, Additive White Gaussian Noise
(WN), Gaussian Blur (Blur) and Fast-Fading (FF).

It is worth mentioning that this database is not the only
work carried out in this field. Goldmann et al.,2 Wang et al.,3
Park et al.41 and Huan et al.42 proposed other databases
intended to improve the stereoscopic image quality. All
four image databases have different sizes of reference and
distorted images. Thus, resizing of the images could change
the precision of the subjective results.

This article compares the psychophysical experiments of
the LIVE 3D image database against a collected set of SIQAs.

Table II. Principal Features of the LIVE 3D stereoscopic image database.

Reference images 20
Distorted images 365
Image format bitmap (BMP)
Studio images No
Resolution 640× 360
Views 2
Distortions 5
Observers 32
Camera 1× Nikon D700
Capture process Single shot
3D display Viewsonic IZ3D

QUALITAS ALGORITHM
Theoretical Framework
Contrast Band-Pass Filtering
Contrast Band-Pass Filtering (CBPF) is usually used in
digital image processing to implement the contrast sensitivity
function of the HVS in a simplified way. It estimates the
image perceived by an observer at a distance d just by
modeling the chromatic sensitivity of our vision. That is,
given an image I and an observation distance d , CBPF
obtains an estimation of what is perceived when observing
I at distance d . CBPF is based on three stimulus properties:
spatial frequency, spatial orientation and surround contrast.

The sensitivity of a human observer to contrast with
respect to spatial frequency is described by the Contrast
Sensitivity Function (CSF). CBPF is usually used in digital
image processing to implement this sensibility to spatial
contrast in a simplified way. In our model, we want to take
into account the strength of image regions within wavelet
decomposition. Therefore, the accuracy of the different
regions, within the decomposition in sub-bands, which
occupy an interval on the spatial frequencies, is adjusted
according to the contrast sensitivity. A further advantage
of this procedure is the possibility to model the different
responses of the HVS, according to the considered frequency
band.

The CBPF model takes an input image I and decom-
poses it into a set of wavelet planes ωs,o of different spatial
scales s and spatial orientations o. It is described as

I =
n∑

s=1

∑
o=v,h,dgl

ωs,o+ cn, (1)

where n is the number of wavelet planes, cn is the residual
plane and o is the spatial orientation, namely, vertical (v),
horizontal (h) or diagonal (dgl).

The filtered image Iρ is recovered byweighting theseωs,o
wavelet coefficients. Theweighting function considers spatial
surround information (denoted by r), visual frequency (ν)
and observation distance (d). The filtered image Iρ is
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Figure 2. Left views of the 20 reference images used in the subjective study (LIVE 3D) of Moorthy et al.1

obtained by

Iρ =
n∑

s=1

∑
o=v,h,dgl

α (v, r) ωs,o+ cn, (2)

where α(v, r) is the weighting function which aims to
reproduce the HVS properties discussed above. Here,
α(v, r)ωs,o ≡ ωs,o;ρ,d can be considered to be the perceptual
wavelet coefficient of image I when observed at distance d
and is written as

α(v, r)= zctrCd(ŝ)+Cmin(ŝ), (3)

where the three terms that describe α(v, r) are defined as
follows.

zctr: non-linear function and estimation of the local
difference relative to its surround, ranging from zero to one,
defined by

zctr =

[
σcen
σsur

]2

1+
[
σcen
σsur

]2 , (4)

where σcen and σsur are the standard deviations of the
wavelet coefficients in two concentric rings, which represent
a center–surround interaction around each coefficient.

Cd(ŝ): weighting function defined as a piecewise
Gaussian function, such as

Cd(ŝ)=


e−ŝ

2
/2σ 2

1 , ŝ= s− sthr ≤ 0,

e−ŝ
2
/2σ 2

2 , ŝ= s− sthr > 0.
(5)

Cmin(ŝ): term that avoids the α(v, r) function being zero and
that is defined by

Cmin(ŝ)=


1
2 e
−ŝ2/2σ 2

1 , ŝ= s− sthr ≤ 0,

1
2 , ŝ= s− sthr > 0,

(6)

taking σ1 = 2 and σ2 = 2σ1. Both Cmin(ŝ) and Cd(ŝ) depend
on the factor sthr. The latter factor is the scale associated with
4 cpd when an image is observed from the distance d ; lp is
the pixel size at one visual degree,43 defined by

sthr = log2

(
d tan(1◦)

4lp

)
. (7)

Figure 3 shows two examples of CBPF images of im2_l (left
view of second image from the LIVE 3D image database),
calculated by Eq. (2) for a 19 inchmonitor with 1280 pixels of
horizontal resolution, at d = {100, 1000} centimeters. CBPF
is a piecewise Gaussian function; therefore, at long distances,
such as 1000 cm, the filtered image seems blurred, Fig. 3(b).

Quality Assessment
The employed image quality assessment is inspired by the
algorithm of Wang et al.25 and is described by

QA[f (i, j), f̂ (i, j)] = LC+ LumD+CnD, (8)

where f (i, j) represents the original reference image and
f̂ (i, j) represents a distorted version of f (i, j) (whose quality
in comparison to f (i, j) is being evaluated).

Thus, QA is an objective quality metric, which is based
on the interaction of three terms: Loss of Correlation (LC),
Luminance Distortion (LumD) and Contrast Distortion
(CnD).

10 © 2016 Society for Imaging Science and Technology



(a) (b)

Figure 3. Filtered images of im2_l obtained by CBPF at different observation distances: (a) d = 100 cm, (b) d = 1000 cm.

(a) (b) (c) (d)

Figure 4. (a), (b) LIVE 3D stereo-pair 5 with JPEG distortion level= 3, R = 0.9909. (c), (d) LIVE 3D stereo-pair 17 with JPEG distortion level = 4 (c) and
distortion level = 1 (d), R = 0.9655.

These terms are described as follows:

LC=
cov[f (i, j), f̂ (i, j)]

var[f (i, j)]× var[f̂ (i, j)]
,

LumD=
2×mean[f (i, j)]×mean[f̂ (i, j)]
mean[f (i, j)]2+mean[f̂ (i, j)]2

,

CnD=
2× std[f (i, j)]× std[f̂ (i, j)]
var[f (i, j)] + var[f̂ (i, j)]

, (9)

where cov is the sample covariance between f (i, j) and f̂ (i, j),
while var andmean are, respectively, the sample variance and
the sample mean of either f (i, j) or f̂ (i, j).

Weighting Function Based on Wavelet Energy Ratio
In this article, we also propose a weighing function intended
to balance effects of unequal bit-allocation to left and right
views based on wavelet energy ratio. These kinds of effects
have been described by several authors, such as Stelmach
et al.,44 Palaniappan et al.45 Vatolin et al.46 and Chen et al.47

The total energymeasure or the deviation signature48ε is
the absolute sum of the wavelet coefficient magnitudes,
defined by Wilson et al.49 as

ε=

N∑
n=1

M∑
m=1

|x(m, n)|, (10)

where x(m, n) is the set of wavelet coefficients, whose energy
is being calculated.

Therefore, Eq. (11) expresses the relative wavelet energy
ratio R, which compares how different the energy of the

left image is compared with the right one. This ratio R also
introduces features of visual discomfort to the QUALITAS
approach:

R=
ε|fl(i, j)|
ε|fr (i, j)|

, (11)

where fl(i, j) and fr (i, j) are the original stereo-pair. When
the energy of the left image is lower than or equal to that of
the right view, the dynamic range of R is [0,1]. Otherwise,
when the energy of the right image is lower than that of the
left view, Eq. (11) has to be inverted in order to maintain the
dynamic range, then R= R−1.

Figures 4(a) and (b) show LIVE 3D stereo-pair no. 5
with JPEG distortion level = 3 to both the left and right
views (balanced distortion), withR= 0.9909, while Figs. 4(c)
and (d) depict LIVE 3D stereo-pair no. 17 with JPEG
distortion level= 4 for the left view and distortion level= 1
for the right view (unbalanced distortion), respectively, with
R = 0.9655. Thus, we can conclude that when the level of
distortion is similar, regardless of the degree of distortion,
R would tend to be 1. Otherwise, if the level of distortion is
different, R would tend to be 0.

Stereoscopic Quality Assessment
Our proposed stereoscopic image quality assessment is
defined as follows:

QUALITAS=

∑
i=l,r

∑
p=F,B

QA(FOri,p, FDisi,p)
4

R

, (12)

where i is either the l or the r image, i.e., the left or right
view, respectively. The term p is related to the plane, either
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(a) (b) (c) (d)

Figure 5. (a), (b) Original stereo-pair; (c), (d) distorted stereo-pair.

(a) (b) (c)

Figure 6. (a) Disparity map dM. (b), (c) Binary masks MskF for foreground (b) and MskB for background (c).

(a) (b) (c) (d)

Figure 7. (a), (b) Filtered original stereo-pair (i=λpFOri ). (c), (d) Filtered distorted stereo-pair (−iλpFDisi ).

foreground (F) or background (B), of the stereoscopic scene.
The terms FOri,p and FDisi,p are the original and distorted
contrast pass-band filtered stereo-pairs, respectively, of the
ith image in the pth plane, while R is the energy ratio in the
original stereo-pair.

Thus, QUALITAS can be considered as a methodology
divided into five steps. In order to exemplify our methodol-
ogy, we consider fl(i, j) (Figure 5(a)) and fr (i, j) (Fig. 5(b))
as the original stereo-pair and f̂l(i, j) (Fig. 5(c)) and f̂r (i, j)
(Fig. 5(d)) as the distorted stereo-pair.

Dividing the Stereoscopic Scene.
Let fl(i, j) and fr (i, j) represent the original stereo-pair to be
compared against a distorted version of it, being the left and
right views, respectively.

Then, the disparity map dM is computed using fl(i, j)
and fr (i, j) (Figure 6(a)). It is noteworthy that the LIVE 3D
image database release contains both left and right display
maps, and one or both of them can be used. Moreover, dM
represents the apparent distances in gray scale, so dM(d) is a
matrix of these distances in centimeters. In order to bisect the
stereoscopic scene into foreground and background planes,
the mean distance d̄ in dM(d) is calculated as

d̄ =
[dM(d)]max− [dM(d)]min

2
. (13)

Thus, if a given distance in dM(d) is less than d̄ , then
it is considered as a part of the foreground mask (MskF ,
Fig. 6(b)), otherwise it is considered as a part of the
background mask (MskB, Fig. 6(c)).

Contrast Band-Pass Filtering.
Let us filter the distorted and original stereo-pairs by means
of Eq. (2); thus FOrl , FOrr , FDisl and FDisr are filtered
images, whichmaintain the high frequencies of fl(i, j), fr (i, j),
f̂l(i, j) and f̂r (i, j), respectively, at a distance of d̄ centimeters
from the observer.

Figures 7(a) and (b) show the filtered original stereo-pair
(
∑

i=l,r FOri), while Fig. 7(c) and (d) show the filtered
distorted stereo-pair (

∑
i=l,r FDisi).

Depth Segmentation.
We apply masks MskF and MskB to both

∑
i=l,r FOri

and
∑

i=l,r FDisi, obtaining eight segmented images, shown
in Figure 8. Thus, the filtered and segmented origi-
nal stereo-pair can be defined as

∑
i=l,r

∑
p=F,B(FOri,p)

and the filtered and segmented distorted stereo-pair as∑
i=l,r

∑
p=F,B(FDisi,p).

Quality Assessment.
We evaluate separately the quality of distorted filtered
and segmented stereo-pairs employing Eq. (8), i.e.,

12 © 2016 Society for Imaging Science and Technology



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. (a)–(d) Filtered and segmented original stereo-pair (
∑

i=l ,r
∑

p=F ,B(FOri,p )). (e)–(h) Filtered and segmented distorted stereo-pair
(
∑

i=l ,r
∑

p=F ,B(FDisi,p )).

(a) (b)

Figure 9. (a) Highly distorted LIVE 3D stereo-pair 2 with JPEG distortion, QUALITAS= 0.6814. (b) Slightly distorted LIVE 3D stereo-pair 2 with JPEG
distortion, QUALITAS=0.9322.

∑
i=l,r

∑
p=F,B QA(FOri,p, FDisi,p). Then, we weight the

obtained scores by 1/4 in order to adjust the dynamic range
to [0,1].

Effect of Disparate Image Quality.
Finally, Eq. (11) is applied to

∑
i=l,r

∑
p=F,B QA(FOri,p,

FDisi,p) in order to balance any possible effect of unequal
bit-allocation into the left and right original stereo-pairs.

Thus, in this example, QUALITAS predicts for Fig-
ure 9(b) a quality score of 0.9322, which corresponds to Low
JPEG Distortion, and for Fig. 9(a) a score of 0.6814, which
corresponds to High JPEG Distortion.

Relation of QUALITAS with Recent Works
QUALITAS is a set of algorithms which predict the quality
of a stereo-pair. It includes different aspects from 3D quality
metrics validated in the literature. We can mention these
different aspects in relation with other recent works.

(1) Dividing the stereoscopic scene: Yasakethu et al.50,51
segment into three planes to predict the sensation of
depth in 3D video, while we divide the image into two
planes, background and foreground.

(2) Contrast Band-Pass Filtering: Otazu et al.43 propose an
Extended Contrast Sensitivity Function. We modify this
function to filter the two planes according to the distance
of the observer.

(3) Depth segmentation: Bosc et al.,6 Shen et al.15 and Yang
et al.17 employ different kinds of depth segmentations.

We adapt these algorithms for the two filtered planes of
the stereo-pair.

(4) Quality assessment:Wang et al.25 propose a quality index
for the 2D/normal image.Wehave adapted this approach
to segment a localized set of pixels.

(5) Effect of disparate image quality:Moreno33measures the
amount of perceptual energy of a 2D/normal perceptual
image quality assessment.We have adapted this function
to measure the ratio of the difference of the energy in the
original stereo-pair.

EXPERIMENTAL RESULTS
The evaluation results of every observer group (MOS) and
image quality metric (MOSp) are normalized using the
following equation:

MÔSp =
MOSp−MOSmin

p

MOSmax
p −MOSmin

p
, (14)

where MOSp denotes the calculated value of each metric,
and MOSmin

p and MOSmax
p are the minimum and maximum

values predicted in the whole LIVE 3D image database. We
also employ Eq. (14) for normalizingMOS results of the LIVE
3D image database.

From Fig. 1, red block, the strength of the relationship
between the normalized MOS and MOSp is measured by
a Performance Measure (PM), as a correlation coefficient
between the two results. Strength of Relationship indicates
the tendency of these two metrics to move in the same or
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(a) (b) (c)

Figure 10. MOS versus MOSp (both normalized). MOSp is predicted by (a) d1 using FSIM, (b) d2 using UQI and (c) DQmap2.

opposite direction. The performance measures used are as
follows:

• Spearman’s Rank Ordered Correlation Coefficient
(SROCC),
• Kendall’s Rank Ordered Correlation Coefficient

(KROCC),
• Pearson’s Linear Correlation Coefficient (LCC),
• Root-Mean-Squared Error (RMSE).

Any correlation coefficient value close to 1 indicates
good correlation between the two. In addition, RMSE
indicate good performance. The Pearson correlation is +1
in the case of a perfect increasing linear relationship and
−1 in the case of a perfect decreasing one (anticorrelation).
When it approaches zero, it means an uncorrelation. The
closer the coefficient is to either −1 or +1, the stronger the
correlation is between the variables. The closer the coefficient
is to 0 the more independent the variables are. RMSE is a
complementary measure that associated with the previous
three completes the score of the test.

Furthermore, we present our results in the following
three ways.

• Scatter plots depict the relationship between subjective
results (normalized MOS) and objective results (nor-
malizedMOSp) of a certain SIQA, in Figures 10 and 11.
• Tables III–V show the overall results of the strength of

relationship of a set of SIQAs computed on the LIVE 3D
image database, together with five different distortions:

(1) ringing artifacts of a JPEG2000k image compres-
sion (JP2K),

(2) blocking artifacts of a JPEG image compression
(JPEG),

(3) additive white Gaussian noise (WN),
(4) Gaussian blurring (Blur),
(5) fast fading noise (FF).

• Tables VI–IX show separately the best performance
results of the whole SIQA-SET compared with QUAL-
ITAS.

Table III. Overall performance across SIQA-SET in predicting perceived stereoscopic
image quality: Linear Correlation Coefficient (LCC), Spearman’s Rank Ordered
Correlation Coefficient (SROCC), Kendall’s Rank Ordered Correlation Coefficient (KROCC),
Root Mean Squared Error (RMSE).

Distortion SIQA NIQA PM Value

ALL d1 FSIMC LCC 0.9169
d2 UQI SROCC 0.9335
d2 UQI KROCC 0.7659
DQmap2 none RMSE 0.1289

JP2K d2 UQI LCC 0.9304
d2 UQI SROCC 0.9104
d2 UQI KROCC 0.7405
DQmap2 none RMSE 0.0961

JPEG d2 UQI LCC 0.7620
d2 UQI SROCC 0.7268
d2 UQI KROCC 0.5212
DQmap2 none RMSE 0.0742

WN Ddl1 none LCC 0.9330
d2 MSSIM SROCC 0.9425
d2 MSSIM KROCC 0.7911
d1 BRISQUE RMSE 0.1001

Blur d2 UQI LCC 0.9558
MSEms none SROCC 0.9318
YouDMOSp AD KROCC 0.7818
PSNRedge NAE RMSE 0.1156

FF d2 UQI LCC 0.8549
d2 UQI SROCC 0.8162
d2 UQI KROCC 0.6245
d2 BPSNR RMSE 0.1116

SIQA-SET
Table III shows the performance of an overall test, which
includes all SIQAs of the SIQA-SET described in Ob-
jective Assessments. SIQA-SET is a compound set of
221 metrics, since we consider 203 metrics combining
d1, d2, d3, PSNRedge, MSEdp, YouDMOSp and OQ with
NIQA algorithms (seven 3D metrics combined with 29 2D
metrics), in addition to 18 purely stereoscopic approaches.
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Table IV. Overall performance of QUALITAS in predicting perceived stereoscopic image
quality: Linear Correlation Coefficient (LCC), Spearman’s Rank Ordered Correlation
Coefficient (SROCC), Kendall’s Rank Ordered Correlation Coefficient (KROCC), Root Mean
Squared Error (RMSE).

Distortion SIQA PM Value

ALL QUALITAS LCC 0.9392
QUALITAS SROCC 0.9334
QUALITAS KROCC 0.7668
QUALITAS RMSE 0.4754

JP2K QUALITAS LCC 0.9467
QUALITAS SROCC 0.9126
QUALITAS KROCC 0.7443
QUALITAS RMSE 0.4907

JPEG QUALITAS LCC 0.7557
QUALITAS SROCC 0.7384
QUALITAS KROCC 0.5396
QUALITAS RMSE 0.5838

WN QUALITAS LCC 0.9333
QUALITAS SROCC 0.9336
QUALITAS KROCC 0.7703
QUALITAS RMSE 0.4539

Blur QUALITAS LCC 0.9397
QUALITAS SROCC 0.9290
QUALITAS KROCC 0.7697
QUALITAS RMSE 0.4799

FF QUALITAS LCC 0.8684
QUALITAS SROCC 0.8256
QUALITAS KROCC 0.6371
QUALITAS RMSE 0.3705

Table III shows the best results in terms of linear and
non-linear correlation of these 221 metrics and the rest
of the SIQAs not based on NIQA, with all 365 images of
the LIVE 3D image database. We use ← to indicate that
we applied a certain NIQA algorithm to a SIQA. Then,
the results show that the best linear correlation is obtained
by d1 ← FSIM (91.69%); see also Fig. 10(a). Meanwhile,
d2←UQI is the best rankingmetric, since it obtains the best
correlation with human observers regarding both SROCC
and KROCC. Moreover, based on the results of DQmap2, it
is clear that for the set of distortions considered, this metric
is the most accurate (Fig. 10(c)). However, considering only
image compression distortions, JPEG2000k and JPEG, we
can highlight that d2←UQI is the bestmetric in either linear
or rank correlations.

QUALITAS
Table IV shows the QUALITAS results on distortions both
taken one by one and in combination. These results show
that QUALITAS is highly correlated with observer results.
When all images of LIVE 3D are compared, LCC, SROCC
and KROCC are, respectively, 93.92%, 93.34% and 76.68%,
and RMSE= 0.4754. Addition of a factor that weighs the

Table V. Overall performance across SIQA-SET including QUALITAS in predicting
perceived stereoscopic image quality: Linear Correlation Coefficient (LCC), Spearman’s
Rank Ordered Correlation Coefficient (SROCC), Kendall’s Rank Ordered Correlation
Coefficient (KROCC), Root Mean Squared Error (RMSE).

Distortion SIQA NIQA PM Value

ALL QUALITAS none LCC 0.9392
d2 UQI SROCC 0.9335
QUALITAS none KROCC 0.7668
DQmap2 none RMSE 0.1289

JP2K QUALITAS none LCC 0.9467
QUALITAS none SROCC 0.9126
QUALITAS none KROCC 0.7443
DQmap2 none RMSE 0.0961

JPEG d2 UQI LCC 0.7620
QUALITAS none SROCC 0.7384
QUALITAS none KROCC 0.5396
DQmap2 none RMSE 0.0742

WN QUALITAS none LCC 0.9333
d2 MSSIM SROCC 0.9425
d2 MSSIM KROCC 0.7911
d1 BRISQUE RMSE 0.1001

Blur d2 UQI LCC 0.9558
MSEms none SROCC 0.9318
YouDMOSp AD KROCC 0.7818
PSNRedge NAE RMSE 0.1156

FF QUALITAS none LCC 0.8684
QUALITAS none SROCC 0.8256
QUALITAS none KROCC 0.6371
d2 BPSNR RMSE 0.1116

relative wavelet energy ratio R increases the degree of linear
correlation. Thus, incorporation of R yields good results not
only on the average response of all distortions, but also on
individual distortions such as JPEG2000 or additive white
Gaussian noise.

Fig. 11 shows the points highly concentrated around the
diagonal line of maximal linear correlation.

SIQA-SET versus Qualitas
Table V shows the performance of an overall experimental
test, which includes all SIQAs of the SIQA-SET and
QUALITAS.

It can be noticed from Fig. 11 that QUALITAS correlates
with MOS at 93.92% in terms of LCC and 76.68% in terms
of KROCC, scoring the best rank among the SIQA-SET.
In terms of SROCC, the best-ranked metric is d2← UQI
with 93.35. Finally, for JPEG2000 and JPEG distortions,
QUALITAS also obtains the highest rank considering both
compression distortions in both rank ordered coefficients.

Therefore, we have presented several metrics (221) to
evaluate the quality of a stereo-pair. Researchers interested
in stereoscopic coding, visual discomfort or stereoscopic
display would be interested in finding the best metric taking
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Table VI. Performance across SIQA-SET in predicting perceived stereoscopic image quality: Linear Correlation Coefficient (LCC). Bold indicates the best metric, while italics indicate the
second best.

Author SIQA NIQA JP2K JPEG WN Blur FF ALL

Benoit et al.5 d1 FSIM 0.9119 0.6259 0.9307 0.9358 0.7834 0.9169
Bosc et al.6 Qs none 0.0259 0.1563 0.8866 0.1853 0.0882 0.4115
Gu et al.9 ODDM4 none 0.7728 0.4461 0.9223 0.7024 0.7540 0.7460
Hewage et al.10 PSNRedge NCC 0.6737 0.3293 0.7997 0.8027 0.7738 0.5772
Jin et al.11 MSEdp UQI 0.8512 0.5769 0.8832 0.8523 0.6327 0.7962
Joveluro et al.12 PQM3D none 0.1393 0.2415 0.8477 0.0444 0.1765 0.4790
Mao et al. 13 Qmao none 0.7189 0.1290 0.7701 0.7527 0.4413 0.7082
Yang et al.17 IQA none 0.7665 0.1187 0.9244 0.7690 0.6993 0.7002
You et al.18 YouDMOSp VSNR 0.8738 0.4102 0.9087 0.8866 0.7859 0.8738

QUALITAS none 0.9467 0.7557 0.9333 0.9397 0.8684 0.9392

Table VII. Performance across SIQA-SET in predicting perceived stereoscopic image quality: Spearman’s Rank Ordered Correlation Coefficient (SROCC). Bold indicates the best metric,
while italics indicate the second best.

Author SIQA NIQA JP2K JPEG WN Blur FF ALL

Benoit et al.5 d1 UQI 0.9104 0.7268 0.9248 0.9306 0.8162 0.9335
Gorley et al.8 SBLC none 0.6744 0.4431 0.6219 0.6229 0.2133 0.5963
Gu et al.9 ODDM4 none 0.8131 0.4202 0.9206 0.6577 0.7734 0.7223
Hewage et al.10 PSNRedge VIFP 0.7802 0.2360 0.8616 0.7958 0.5027 0.7976
Jin et al.11 MSEms AD 0.8608 0.4484 0.9310 0.9318 0.6859 0.8952
Joveluro et al.12 PQM3D none 0.0239 0.1329 0.9167 0.1398 0.3360 0.2667
Mao et al.13 Qmao none 0.7460 0.1629 0.7790 0.6279 0.3599 0.7253
Yang et al.17 IQA none 0.7993 0.1212 0.9316 0.9020 0.5875 0.8340
You et al.18 YouDMOSp MSSIM 0.8979 0.5991 0.9423 0.9282 0.7349 0.9223

QUALITAS none 0.9126 0.7384 0.9336 0.9290 0.8256 0.9334

into account certain distortions. Therefore, we propose an
analysis of the behavior of the top ten metrics in the overall
SIQA-SET, in Tables VI–IX. Each table represents only one
performance measure, LCC, SROCC, KROCC or RMSE.

From Table VI, QUALITAS obtained the best results in
linear correlation coefficient not only in overall performance
(93.92%) but also in all individual distortions. d1← FSIM
obtained the second best results in linear correlation
coefficient not only in overall performance (91.69%) but
also in all individual distortions, except in fast fading (FF)
distortion. For FF distortion, YouDMOSp is the second best
metric, with 78.59%.

Table VII shows the performance across SIQA-SET
including QUALITAS in predicting perceived stereoscopic
image quality using Spearman’s Rank Ordered Correlation
Coefficient. Here, d2 ← UQI obtained the best results in
overall performance (93.35%) and the second best results in
JPEG2000 (91.04%), JPEG (62.59%), Gaussian blur (93.06%)
and fast fading distortions (81.62%).Meanwhile, QUALITAS
obtained the second best results in overall performance
(93.34%) and the best results in JPEG2000 (91.26%), JPEG

(73.84%) and fast fading distortions (82.56%). For Gaussian
blur (93.06%) and white noise (93.18%), the best metrics are
YouDMOSp and MSEms, respectively.

From Table VIII, Av ← MAD obtained the best
results in linear correlation coefficient not only in overall
performance (77.72%) but also in all individual distortions,
except in fast fading distortion. For fast fading distortion,
YouDMOSp←UQI is the best metric, with 64.47%.

Table IX shows the performance across SIQA-SET in
predicting perceived stereoscopic image quality using Root
Mean Squared Error. Here, Av ←MAD obtained the best
results not only in overall performance (0.0732) but also
in JPEG2000 (0.0630), JPEG (0.0529), white noise (0.0805),
Gaussian blur (0.0919) and fast fading distortion (0.0861).

CONCLUSIONS
In this article we propose a new stereoscopic image quality
metric, QUALITAS, which works in the following way.

• By dividing the disparity map into two parts.
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Table VIII. Performance across SIQA-SET in predicting perceived stereoscopic image quality: Kendall’s Rank Ordered Correlation Coefficient (KROCC). Bold indicates the best metric,
while italics indicate the second best.

Author SIQA NIQA JP2K JPEG WN Blur FF ALL

Benoit et al.5 d2 UQI 0.7405 0.5212 0.7570 0.7697 0.6245 0.7659
Gorley et al.8 SBLC none 0.4608 0.3065 0.4468 0.4141 0.1510 0.4201
Gu et al.9 ODDM4 none 0.6089 0.2666 0.7456 0.5071 0.5783 0.5284
Hewage et al.10 PSNRedge VIFP 0.5899 0.1596 0.6652 0.6222 0.3694 0.5958
Jin et al.11 MSEms AD 0.6620 0.2869 0.7665 0.7717 0.4998 0.7022
Joveluro et al.12 PQM3D none 0.0152 0.0893 0.7473 0.0929 0.2263 0.1869
Mao et al.13 Qmao none 0.5418 0.1216 0.5791 0.4525 0.2535 0.5294
Yang et al.17 IQA none 0.5918 0.0735 0.7665 0.7333 0.4168 0.6296
You et al.18 YouDMOSp MSSIM 0.7158 0.4066 0.7905 0.7737 0.5485 0.7462

QUALITAS none 0.7443 0.5396 0.7703 0.7697 0.6371 0.7668

Table IX. Performance across SIQA-SET in predicting perceived stereoscopic image quality: Root Mean Squared Error (RMSE). Bold indicates the best metric, while italics indicate the
second best.

Author SIQA NIQA JP2K JPEG WN Blur FF ALL

Benoit et al.5 d1 BRISQUE 0.1935 0.1750 0.1001 0.1442 0.1278 0.1485
Gorley et al.8 SBLC none 0.2980 0.1923 0.4733 0.3872 0.5295 0.3750
Gu et al.9 ODDM4 none 0.1041 0.1654 0.1079 0.1304 0.1490 0.1315
Hewage et al.10 PSNRedge AD 0.1995 0.1875 0.2949 0.2203 0.1449 0.2084
Jin et al.11 MSEdp BIQI 0.1840 0.1726 0.1130 0.2714 0.1778 0.1754
Mao et al.13 Qmao none 0.3899 0.4327 0.3921 0.3730 0.3014 0.3783
Shen et al.15 HDPSNR none 0.2035 0.2237 0.2981 0.2162 0.2549 0.2415
Yang et al.17 IQA none 0.2081 0.0931 0.4136 0.3473 0.4275 0.2932
You et al.18 DQmap2 none 0.0961 0.0742 0.1273 0.2506 0.1498 0.1289

QUALITAS none 0.4907 0.5838 0.4539 0.4799 0.3705 0.4754

• By employing a Contrast Band-Pass Filtering, so that
dynamic parameters are considered as observational
distances.
• By including three factors: loss of correlation, lumi-
nance and contrast distortion.
• By taking into account the visual differences between
left and right images, employing a penalization depend-
ing on their wavelet energy.

Thus, the novelty of QUALITAS lies in combining some
features of certain stereoscopic image quality assessments.

Furthermore, this article includes the comparison of 25
Stereoscopic Image Quality Assessments (SIQAs).

Some algorithms can be combined with any 2D/normal
quality metric (NIQA), giving as a result 221 metrics which
were compared againstQUALITAS.QUALITASobtained the
best results in terms of overall performance of the correlation
coefficients LCC, SROCC andKROCC, with 93.92%, 93.34%
(just 0.01% below the best one) and 76.68%. For Root Mean
Squared Error, QUALITAS scored in the lower rank, but it is
well known that RMSE is not correlated with human vision.

Figure 11. MOS versus MOSp (both normalized). MOSp is predicted
by QUALITAS.

These results confirm that all metrics in SIQA-SET are
simple modifications of NIQA, which take in to account
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some extra characteristics from the disparity map (usually
depth variances). On the contrary, QUALITAS incorporates
disparity masking in addition to divide the 3D scenario into
two parts: background and foreground planes.

Some distortions considered, such as additive white
Gaussian noise and Gaussian blur, are global distortions.
Therefore, these distortions do not affect the perception of
depth considerably but they statistically modify the image
content. Some metrics in SIQA-SET correlate extremely well
with these distortions, such as d1 and MSEms.

For distortions with localized artifacts, the performance
of all metrics in SIQA-SET decreases, especially for the
local blocking artifacts caused by a JPEG compression.
Thus, for JPEG compression distortion, the performance of
QUALITAS is good, with 75.57% (LCC), showing to be not
dependent on a monoscopic image quality.

Finally, the presented tests and their results globally
confirm the potential of the proposed metric to evaluate
stereo-pairs.
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