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Abstract
The common practice in computer graphics of multiplying RGB

triplets to model the perception of reflected light is simple and

efficient, but it does not predict color reliably, nor can it model

metamerism or optical phenomena that are spectral in nature, such

as iridescence. Spectral rendering meets these goals, but the O(n)
cost incurred in multiplication of n-dimensional spectra can be pro-

hibitively expensive. Although spectra can be well approximated by

linear combinations of m ≪ n basis vectors, standard linear models

lead to matrix-vector multiplication with complexity O(m2) when

performing lighting calculations in the lower-dimensional space. A

method by Drew and Finlayson reduces this cost to O(m) with a

“sharp” basis that has been transformed by an m×m matrix T, each

column of which is the solution to an optimization problem requiring

specification of an interval of wavelengths. Choosing good intervals,

however, is itself an optimization problem, which the authors neither

pose nor solve. Instead, we construct T by optimizing the sharpness

of a basis and the minimum angle between its vectors, but obtain

better results by minimizing the residual error explicitly. Alterna-

tively, by minimizing a weighted subspace projection we can solve

a simpler problem that converges to the same minimum-residual so-

lutions. Testing these methods with a variety of spectra, we obtain

good accuracy with as few as four dimensions, permitting real-time

rendering at arbitrarily high spectral resolutions for a cost that is

only a fraction above that of RGB rendering.

Introduction
A color signal arriving at the eye is characterized by a spec-

tral power distribution (SPD) of the radiant power present at each

wavelength within the visual range. Most of this light arrives from

a source, or illuminant, after interaction with a material that absorbs,

reflects and/or transmits different wavelengths of incident light ac-

cording to the optical properties that emerge from its molecular struc-

ture. Although the methods described here can model transmittance,

we confine our discussion to Lambertian surface reflectance by nor-

mal materials (e.g., non-fluorescent), which is fully characterized by

a reflectance spectrum giving the fraction of incident light reflected

at each wavelength. Furthermore, we use the word spectrum to refer

to an SPD or a reflectance spectrum interchangeably.

Because human color vision is three-dimensional, a triplet rep-

resenting relative proportions of primary colors is an appropriate de-

scription of a color, which is the subjective result of light interacting

with a material and an observer’s visual system. Common practice

in computer graphics omits the explicit notion of an observer and

uses RGB triplets in a different way to describe the spectral causes

of color. That is, spectra are represented by coarse samplings at red,

green and blue wavelengths, and their interaction is modeled by com-

ponentwise multiplication, which amounts to multiplying the color

of an illuminant by the color of a surface illuminated by a white

light. As shown by Borges [3], this efficient approximation fails to

predict color when spectra differ sufficiently from constant values.

It also fails to model metamerism, as the colors of a pair of surfaces

represented as triplets will always either match or not match under

any illuminant with non-zero RGB components. Nor can it model

interference effects, such as iridescence, which require information

that is missing from the RGB model.

With spectra represented as n-dimensional vectors of point sam-

ples, color signals can be formed with complexity O(n) by com-

ponentwise multiplication. Display colors are then computed by a

linear mapping to coordinates in a three-dimensional color space.

Finite-dimensional linear models may be used to represent spectra

as vectors of m ≪ n coefficients multiplying basis vectors, but the

computational benefits of this method are lost when m2
≥ n, because

color signals are computed with matrix-vector multiplication, with

complexity O(m2).

To reduce this cost, Drew and Finlayson propose a method in

which basis vectors are “sharpened” by a change of coordinates [7].

If the transformed vectors are sufficiently disjoint, their coefficients

may be multiplied with acceptable error when the transformation is

inverted. To find the change-of-basis matrix T, m optimization prob-

lems are solved, each of which requires the choice of an interval of

wavelengths in which the corresponding basis vector is sharpened.

Finding good intervals, however, is itself an optimization problem,

which the authors do not address. Having found that good choices

are not obvious, we instead pose and solve a nonlinear programming

(NLP) problem to find the matrix T that minimizes the residual er-

ror. With this method we obtain accurate results with four to nine

dimensions when rendering scenes involving arbitrary combinations

of daylight, incandescent and fluorescent illumination, with perfor-

mance comparable to that of RGB rendering.

Because explicit minimization of the residual error is imprac-

tical in many applications, which may involve millions of different

reflectance spectra, an appealing alternative is to optimize a simpler

function of the sharp basis. An intuitive choice is to maximize sharp-

ness, but we find that the sharpest basis does not yield the small-

est residual error, even when the basis vectors are close to orthogo-

nal. Instead, by minimizing a weighted projection of the subspace

spanned by the reflectance spectra onto a subspace that is a function

of the illuminant(s) and T we obtain results identical to those ob-

tained by minimizing the residual error explicitly. The complexity

of this simpler optimization problem is independent of the number

reflectance spectra and depends only on a small number of vectors,

obtained by a singular value decomposition (SVD) of the reflectance

spectra of interest, which together form an orthonormal basis for the

subspace spanned by the whole set.

The RGB Approximation

A color signal C(λ )= E(λ )S(λ ) is the product of an SPD E(λ )
and a reflectance spectrum S(λ ), both continuous functions of wave-

length λ . The formation of a color b from an observer’s response is
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approximated in discrete form by a matrix-vector multiplication1:

b =

(

∫

R(λ )C(λ )dλ ,
∫

G(λ )C(λ )dλ ,
∫

B(λ )C(λ )dλ
)T

≈ MXYZ to RGBMSPD to XYZ(E∗S) = MC = (r,g,b)T
C ,

where R(λ ), G(λ ) and B(λ ) are an observer’s trichromatic sensi-

tivities, E, S and C are n-dimensional vectors of point samples of

the spectra E(λ ), S(λ ), and C(λ ), and the 3× n matrix M is the

product of a 3× n matrix containing the International Commission

on Illumination (CIE) 1931 2◦◦◦ Standard Observer color-matching

functions and a 3× 3 XYZ-to-RGB conversion matrix [1]. We use

61-dimensional vectors to represent spectra sampled between 400

and 700 nm at 5 nm intervals, a resolution high enough to capture

the narrow peaks of typical fluorescent illuminants [15].

The usual method of rendering with RGB triplets multiplies

the color of an illuminant by the color of a reflectance spectrum

illuminated with equal energy at unity amplitude:

b′ = ME∗MS = (r,g,b)T
E ∗ (r,g,b)T

S . (1)

In general, b′
6= b, but this approximation is very good in practice, if

either spectrum is close enough to a scaled white [3]. In these cases

Eq. (1) is as much a color specification as it is a prediction of the

color that would be observed by a human with normal color vision

when light from illuminant E is reflected by the surface S.

Finite-Dimensional Linear Models of Spectra
Typical spectra have been shown to be well approximated by

linear combinations of a small number of orthonormal basis vectors

obtained by principal component analysis (PCA) [17]. We represent

SPDs and reflectance spectra with a single basis, obtained from a

PCA of the color signals formed by p illuminant SPDs and q re-

flectance spectra, retaining the first m principal components as the

columns of an n×m orthonormal matrix Q. Coefficients represent-

ing spectra S and E in the m-dimensional basis are thus s= QT S and

e = QT E.

Computing a color signal in the m-dimensional space involves

an implicit expansion into n dimensions: c = QT diag(S)Qe = Rse,

where the m × m matrix Rs is a function of the reflectance spec-

trum S. Thus we see that rendering in m dimensions requires matrix-

vector multiplication with O(m2) cost. An approximate color signal

C ≈ Qc is obtained by a weighted combination of the basis vectors.

Spectral Sharpening
To reduce the cost of rendering in a lower-dimensional space,

Drew and Finlayson propose the method of spectral sharpening [7],

in which a linear transformation by an m×m matrix T forms a new

set of ideally disjoint, or complementary, basis vectors Q̃ = QT.

That is, if distinct basis vectors Q̃i and Q̃ j are complementary, then

Q̃i ∗ Q̃ j = 0. If this condition is met, the computation of an exact

color signal in the sharp basis is reduced to componentwise multipli-

cation of vectors of coefficients representing an illuminant and a re-

flectance, as in the RGB approximation, but in m dimensions instead

1We denote matrices and vectors with boldface or calligraphic letters, and
all vectors are assumed to be column vectors, unless otherwise noted. An
asterisk is used to denote componentwise vector multiplication; that is, for
vectors U = (U1,U2, . . . ,Un)

T and V = (V1,V2, . . . ,Vn)
T , U ∗V = V ∗U =

diag(U)V = diag(V)U = (U1V1,U2V2, . . . ,UnVn)
T .

of three. For nonsingular T, no error is incurred by the sharpening

transformation itself, because it is invertible. Rather, error results

from multiplication of sharp basis coefficients, since in general the

sharp basis vectors are only approximately complementary.

Because Q̃ is not an orthonormal basis, computing sharp ba-

sis coefficients involves the Moore-Penrose pseudoinverse Q̃+ =
(Q̃T Q̃)−1Q̃T = T−1QT , so that s̃ = Q̃+S and ẽ = Q̃+E. An ap-

proximate color signal is thus computed as

C ≈ Q̃(ẽ∗ s̃) = QT[(T−1QT E)∗ (T−1QT S)]

= QT[(T−1e)∗ (T−1s)]. (2)

Eq. (2) shows that rendering with sharp basis coefficients amounts

to changing the basis in which coefficients are multiplied. The prod-

uct is then transformed back to the standard basis before expansion.

Resulting color signals can contain negative components, which we

clamp to zero. For multiple reflections, sharp basis coefficients are

multiplied sequentially, C ≈ Q̃s̃k ∗ · · · ∗ s̃2 ∗ s̃1 ∗ ẽ.

In the ideal case, for columns Q̃i and Q̃ j of Q̃, we have

C = Q̃ẽ∗ Q̃s̃ =
m

∑
i=1

Q̃i ∗ Q̃iẽis̃i.

To form C with linear combinations of Q̃i rather than Q̃i ∗ Q̃i, sharp

basis coordinates are defined as relative to the coordinates w̃ of a

white reflectance W = 1. Thus,

C

W
=

m

∑
i=1

Q̃i ∗ Q̃i ẽis̃i

Q̃iw̃i

=
m

∑
i=1

Q̃i
ẽis̃i

w̃i
=

m

∑
i=1

Q̃iẽis̃i.

The last equality is satisfied if w̃ = 1, which is accomplished by nor-

malizing Q̃+ so that Q̃+1 = 1. Equivalently, we may normalize T,

so that T1 = QT 1. In our optimizations that minimize the residual

error, or an equivalent weighted subspace projection, this constraint

is not strictly necessary, as the optimal solutions all converge to so-

lutions with this property. However, some optimization algorithms

may benefit from imposing it explicitly.

It should be noted that as a consequence of defining “color”

in the sharp basis as relative to white, color signals formed from a

scaled white light or surface are independent of T and exactly equal

to their projections onto the orthonormal basis Q:

Q̃[(Q̃+αW)∗ (Q̃+S)] = αQ̃Q̃+S = αQQT S = αQs

Q̃[(Q̃+E)∗ (Q̃+αW)] = αQ̃Q̃+E = αQQT E = αQe.

In these cases the error in the sharp basis approximation to a finite-

dimensional linear model vanishes.

In [7] the authors switch the roles of Q̃T and Q̃+, computing

sharp basis coefficients as s̃ = Q̃T S and ẽ = Q̃T E and color signals

as C = (Q̃+)T ẽ ∗ s̃. Since (Q̃+)+ = Q̃, this notation is equivalent

to ours, which we prefer if only because it is standard and familiar.

It should be noted, however, that their matrix T is therefore equal

to the transpose of the inverse of ours, since (Q̃+)T = QT−T . This

is also an equivalent notation, as specification of T determines T−T

and vice versa. On these two points our formulations are equivalent,

but an important difference may occur in the method used to find

T. Drew and Finlayson maximize the sharpness of Q̃+, while we

maximize the sharpness of Q̃. Since, as we show below, the latter
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approach does indeed yield better results, we suspect that the effec-

tiveness of their method is due to the fact that sharpening of Q̃+

tends to sharpen Q̃ implicitly, if not maximally. That this is the case

can be seen by noting that since Q̃+Q̃ = I, for rows i and columns

j we have 〈Q̃+
i ,Q̃ j〉 = δi j. Thus, constraining the rows of Q̃+ to

be approximately complementary will tend to do the same for the

columns of Q̃.

Finding T

The effectiveness of spectral sharpening depends on finding a

matrix T that transforms Q in such a way that the error incurred

by multiplication of sharp basis coefficients is reduced to an accept-

able level. In [7] this is posed as an optimization problem requiring

the specification of a set of m wavelength intervals, which the au-

thors simply suggest should be approximately uniform and evenly

spaced over the visual range. Metaheuristic methods, such as parti-

cle swarm optimization (PSO) [11], have shown us that good inter-

vals are in general neither uniform nor evenly spaced.

Removing the need for sharpening intervals, we obtain better

results by solving a nonlinear optimization problem that seeks to

minimizes the residual error. Alternatively, maximizing the sharp-

ness of the transformed basis should be considerably less expensive,

as it involves only
(

m
2

)

pairs of vectors instead of p · q color signals.

We find, however, that a sharper basis does not in general yield a

lower residual error. Hypothesizing that the quality of a sharp basis

also depends on the angles between the basis vectors, we pose an

optimization problem that maximizes sharpness while constraining

the minimum angle over a range of angles and choose from among

the optimal T matrices the one that yields the smallest residual er-

ror. Although we do find that the bases obtained by this approach

are better than those found by simply maximizing sharpness, they

are not in general as good as those found by minimizing the residual

error. Instead, seeking an alternative approach whose complexity is

also independent of the size of a color signal set, we pose a problem

that minimizes the weighted projection of a d-dimensional subspace

spanned by the reflectance spectra, where d < n ≪ q, onto a sub-

space spanned by a function of T and the illuminants. The sharp

bases found by this more efficient method are equivalent to those

found by minimizing the residual error explicitly.

By Evenly Spaced Sharpening Intervals

Drew and Finlayson construct the m columns of T−T by sharp-

ening the corresponding rows of Q̃+ one at a time within evenly

spaced wavelength intervals. In [7] this is posed as m quadratic pro-

gramming problems with a non-negativity constraint on Q̃+. We

adopt instead a method described by the same authors in an earlier

article on spectral sharpening [9], in which each column of T−T is

the solution to an eigenvector problem which allows the sharp basis

to take on negative values. By removing non-negativity constraints

on Q̃+ and Q̃, which are not mathematically necessary, from this and

all other methods described here, we would expect to obtain sharp

bases that yield smaller residual errors.

By Optimizing the Sharpening Intervals

With
(

n
2m

)

possible choices, an exhaustive search for the best

sharpening intervals is not practical. Instead, we use PSO to find

intervals that minimize the total squared residual error:

p

∑
a=1

q

∑
b=1

∥

∥Q̃
(

ẽa ∗ s̃b − Q̃+Ea ∗Sb

)
∥

∥

2

2
(3)

=
p

∑
a=1

q

∑
b=1

∥

∥Q̃
[

diag(ẽa)Q̃
+
− Q̃+ diag(Ea)

]

Sb

∥

∥

2

2

=
p

∑
a=1

∥

∥T
[

diag(ẽa)Q̃
+
− Q̃+ diag(Ea)

]

S
∥

∥

2

F

=
p

∑
a=1

∥

∥∆∆∆ẼaS
∥

∥

2

F
=

∥

∥

∥

[

∆∆∆Ẽ1 · · · ∆∆∆Ẽp

]T
S

∥

∥

∥

2

F
=
∥

∥

∥
∆∆∆ẼT

S

∥

∥

∥

2

F
,

where the n× p ·m matrix ∆∆∆Ẽ is a function of T and p illuminants,

S is a n×q matrix containing q reflectance spectra and ‖ · ‖F is the

Frobenius matrix norm.

Each particle visits a sequence of points along its trajectory

in 2m-dimensional space, with the coordinates of every point x =
(x1, . . . ,x2m) constrained so that xi ∈ {400,405, . . . ,700} and xi <

xi+1. Each point corresponds to a set of sharpening intervals that

yields the m columns of T−T by the method described in [9]. The

best set of visited intervals is the one that produces the sharp basis

Q̃ yielding the smallest residual error as expressed by Eq. (3).

By Minimizing the Residual Error
Rather than search for the sharpening intervals that minimize

the residual error, we may minimize the error explicitly by solving

min.

∥

∥

∥
∆∆∆ẼT

S

∥

∥

∥

2

F
(4)

with an NLP method, such as sequential quadratic programming or

the Levenberg-Marquardt algorithm.

By Optimizing Sharpness and the Minimum Angle
In [6] the authors suggest that the quality of a sharp basis is

due to the sharpness of the pseudoinverse and the angles between its

rows. Angles close to 90◦◦◦are preferred, because they reduce “cross

talk.” Sharpness and angles, however, are inseparable features. Nev-

ertheless, without knowledge of the function that relates them to the

residual error, we can try to optimize their combination by maximiz-

ing sharpness while constraining the minimum angle between any

pair of vectors to a sequence of angles. Angles constrained to a min-

imum of 0◦◦◦ are effectively unconstrained. From among the resulting

T matrices we choose the one that yields the least residual error.

min.
θ

∥

∥

∥
∆∆∆ẼT

S

∥

∥

∥

2

F
(5a)

s.t. min.
T

m−1

∑
i=1

m

∑
j=i+1

〈Q̃+
i ∗ Q̃+

i ,Q̃+
j ∗ Q̃+

j 〉

〈Q̃+
i ,Q̃

+
i 〉〈Q̃

+
j ,Q̃

+
j 〉

(5b)

〈Q̃+
i ,Q̃

+
j 〉

2

〈Q̃+
i ,Q̃

+
i 〉〈Q̃

+
j ,Q̃

+
j 〉

≤ cos2(θ ), θ = 90◦◦◦, . . . ,0◦◦◦

(5c)

T1 = QT 1. (5d)

By substituting columns Q̃i and Q̃ j of Q̃ for rows Q̃+
i and Q̃+

j

of Q̃+ in Eqs. (5b) and/or (5c), we obtain four NLP problems. Doing

so allows us to test the hypotheses that the sharpness of Q̃ is in fact

more important than that of Q̃+, and that both angle constraints yield

equivalent results.
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By Minimizing a Weighted Subspace Projection
Observing that residual error is minimized by minimizing the

projection of the column space of S onto the column space of ∆∆∆Ẽ, we

may find T by forming the projection matrix ∆∆∆Ẽ∆∆∆Ẽ+ and solving

min.

∥

∥

∥
∆∆∆Ẽ ∆∆∆Ẽ+S

∥

∥

∥

2

F
.

We can instead solve a smaller problem by constructing an

orthonormal basis for the column space of S from its SVD, S =
USΣΣΣSVT

S
, where US and VS are respectively n × n and q× n or-

thonormal bases for the column and row spaces of S, and ΣΣΣS is

an n × n diagonal matrix of its singular values arranged in de-

scending order. Because a small number of dimensions accounts

for almost all the variance in spectra, in the typical case only the

first d < n columns of US are of interest, which we weight by

their corresponding singular values. Likewise, the decomposition

∆∆∆Ẽ = U∆∆∆ẼΣΣΣ∆∆∆ẼVT
∆∆∆Ẽ yields U∆∆∆ẼΣΣΣ∆∆∆Ẽ, a weighted basis for the col-

umn space of ∆∆∆Ẽ. Our smaller NLP problem is thus

min.

∥

∥

∥
ΣΣΣ∆∆∆ẼUT

∆∆∆ẼU′

SΣΣΣ′

S

∥

∥

∥

2

F
, (6)

where U′

S is the first d columns of US, and diagonal ΣΣΣ′

S
contains the

corresponding singular values. Since U′

S and ΣΣΣ′

S
are not functions

of T, they are computed only once, before an optimization begins.

Real-Time Implementation
Our method’s computations are performed during a one-time

pre-process or once every frame in a real-time application. As most

of these fall in the first category, the real-time computational com-

plexity is similar to that of RGB rendering. Once a sharp basis is

constructed and corresponding coefficients are pre-computed for all

spectra, rendering consists simply of lighting calculations performed

by multiplying sharp basis coefficients.

When all of a frame’s lighting calculations are completed, the

linear RGB color at each pixel is computed by multiplying a vector

of sharp basis coefficients by a 3×m matrix MQ̃, where the 3× 3

matrix M is the concatenation of: 1) a linear mapping of SPD to

XYZ coordinates; 2) a chromatic adaptation; and 3) a linear mapping

from adapted XYZ to RGB coordinates. To compute the chromatic

adaptation, various methods exist for estimating a scene’s currently

dominant illumination, such as the gray world assumption [4], or

white patch algorithms, including the Retinex method [14]. Because

the assumptions on which these methods are based can be easily

violated, we prefer the method of Wilkie and Weidlich [20], which

is general and robust.

Results
To test our methods we use a representative from each of three

classes of illuminants: D65 for daylight, illuminant A for incan-

descent light and the fluorescent F2. For reflectance spectra, we

use three sets for their different characteristics. The 1,269 Munsell

Matte spectra measured by the University of Eastern Finland Spec-

tral Color Research Group2 [12] are familiar to the color science

community. As well, they are generally smooth enough to be well

approximated in a small number of dimensions. We also use the

same group’s Natural Colors, a set of 218 spectra of mostly color-

ful plant materials. These more challenging spectra, many of which

2http://www.uef.fi/fi/spectral/spectral-database

yield saturated colors, generally require more dimensions to approx-

imate with similar accuracy. Finally, we include the 48 spectra of

Fairchild’s and Johnson’s METACOW image [8], both because half

of them are measured from the well known ColorChecker color ren-

dition chart3 [18] and because the other half are particularly chal-

lenging. These synthetic spectra are constructed by adding linear

combinations of metameric blacks to yield colors that match when

illuminated by D65 and differ significantly when illuminated by il-

luminant A. Being far from smooth, these unnatural spectra are an

excellent stress test.

Accuracy
For each set of reflectance spectra we use the three illuminants

to construct four color signal sets. Three of these consist of the re-

flectance spectra illuminated by a single illuminant; the fourth con-

sists of their union. For each of these sets we use PCA to construct

six m-dimensional orthonormal bases, where m ∈ {4,5, . . . ,9}. For

each orthonormal basis Q we use each of our methods to find a ma-

trix T. Accuracy is measured by comparing the color signals ob-

tained by componentwise multiplication of n-dimensional spectra,

considered to be ground truth, to those obtained by componentwise

multiplication of sharp basis coefficients. For sets constructed with

a single illuminant, we thus measure residual errors obtained from

approximations of q ∈ {1269,218,48} color signals. For sets con-

structed with three illuminants, we measure four times these num-

bers by also comparing color signals constructed with an illuminant

that is the average of all three.

We use a normalized root-mean-square error (NRMSE) to mea-

sure residual spectral error:

NRMSE =
100%

maxi,λ Ci(λ )

√

∑λ
[

(Q̃ẽ∗ s̃)(λ )−C(λ )
]2

n
,

where i ∈ {1, . . . , p · q} indexes the color signals in a set. That is, to

set a convenient and intuitive scale, the RMS error is normalized as

a percentage of the maximum amplitude.

We measure the effect of spectral error on color accuracy with

the CIEDE2000 color difference formula [5]. A commonly cited

rule of thumb is that a difference of 1 is just noticeable, but dif-

ferences as high as 3 or more may be imperceptible [16]. In any

case, color difference measurements should not be interpreted as

absolute measures of accuracy, because the viewing conditions for

which they are defined are quite different from ours. In particular,

the CIEDE2000 formula measures color differences of large patches

on a uniform gray background with D65 illumination. Neverthe-

less, pixel color difference may be a useful measure of perceptibil-

ity of differences between images, and in at least one study it was

found that differences between pairs of images with average pixel

differences of ∆Eab < 2.15 were imperceptible [19]. Thus, caveats

notwithstanding, the CIEDE2000 color difference measurements in-

cluded here should provide an approximate, relative scaling of the

perceptual effects of spectral errors.

The results depicted in Fig. 1, showing average spectral errors

and color differences obtained for single-illuminant METACOW

color signal sets, are representative of the results obtained for all

other single- and multi-illuminant sets when sharpness is optimized.

For all D65 sets, optimizing the sharpness of either Q̃ or Q̃+ yields

3ColorChecker Classic at xritephoto.com.
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E NRMSE ∆E00

D65

A

F2

Figure 1. For dimensions m = 4,5, . . . ,9, average spectral errors and color

differences of METACOW color signals computed with single-illuminant, sharp

bases constructed by methods that optimize: from outer (darker) to inner

(lighter) bars 1) Q̃+ sharpness and its minimum angle; 2) Q̃+ sharpness and

the minimum Q̃ angle; 3) Q̃ sharpness and the minimum Q̃+ angle; and 4) Q̃

sharpness and its minimum angle.

(a) (b)

Q̃

(Q̃+)T

(c) (d)

Q̃

(Q̃+)T

Figure 2. 5-dimensional sharp bases and their pseudoinverses obtained from

Munsell/D65 color signals by: a) minimizing the residual error explicitly; b) min-

imizing a weighted subspace projection; c) optimizing the sharpness of Q̃ and

its minimum angle; d) optimizing the sharpness of Q̃ the minimum Q̃+ angle.

similar results, but significant differences are seen with F2 and illu-

minant A. The best results, in general, are obtained by maximizing

the sharpness of Q̃ while constraining the minimum angle between

its columns or between the rows of Q̃+. For all color signal sets and

all dimensions, optimization with either of these constraints yields

an essentially identical result, as shown, for Munsell/D65 color sig-

nals and m = 5, by the bottom two rows of Fig. 2. Perhaps the most

significant shortcoming of the methods that optimize sharpness is

that their accuracy is not necessarily improved by simply increasing

the dimensionality of a basis, which, for METACOW color signals

formed with F2 and illuminant A, is shown clearly in Fig. 1.

m Residual Spectral Errors NRMSE ∆E00

(a)

4

6

8

(b)

4

6

8

Figure 3. Errors and color differences incurred by computing Natural Colors /

illuminant A color signals with a sharp basis found by (a) minimizing a weighted

subspace projection and (b) optimizing the sharpness of Q̃ its minimum angle.

The graphs in Fig. 4 show results obtained with the four other

methods and the best method that optimizes sharpness. The first

three rows show results obtained for color signal sets formed with

a single illuminant; results shown in last four rows are obtained for

sets formed with all three. In general, the lowest accuracy is attained

using the method of Drew and Finlayson or by optimizing sharpness,

while the highest accuracy is attained by minimizing the residual er-

ror explicitly or by minimizing a weighted subspace projection. Re-

sults obtained by PSO are not quite as accurate but are in every case

as good as or better than those obtained by the two least accurate

methods. Also notable is that the best sharpening intervals found by

PSO are in every case far from evenly spaced or uniform. Further-

more, we learn from these results that accuracy can be very sensitive

to interval choice; moving a single optimal interval boundary by the

minimum of 5 nm increases average color difference in some cases

by more than 600%.

Three trends are notable in Fig. 4. First, for D65 color signals,

all methods, except that of Drew and Finlayson, yield similar accura-

cies. This result is likely due to the fact that D65 is close to white, for

which the sharp basis approximation is exact and independent of T.

Second, the three most accurate methods have the desirable property

of yielding accuracies that increase with dimensionality, a property

not shared by the other methods. Fig. 3 shows a detailed example

of this difference. We also see that in all cases the same accuracies

are attained by minimizing the residual error and by minimizing a

weighted subspace projection. In fact, these methods converge to

the same T matrices (up to column order) and thus to the same sharp

bases, examples of which are shown in the top row of Fig. 2.
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Munsell Natural Colors METACOW

E NRMSE ∆E00 NRMSE ∆E00 NRMSE ∆E00

single-illuminant bases

D65

A

F2

multi-illuminant bases

D65

A

F2

avg.

Figure 4. For dimensions m = 4,5, . . . ,9, average NRMS errors and CIEDE2000 color differences of color signals computed with sharp bases constructed by: from

outer (darker) to inner (lighter) bars, 1) evenly spaced sharpening intervals; 2) optimizing the sharpness of Q̃ and its minimum angle; 3) PSO of sharpening intervals;

4) minimizing a weighted subspace projection; and 5) explicitly minimizing the residual error.

Performance

Relative to the RGB cost, the theoretical cost of shading frag-

ments with sharp basis coefficients is
⌈

m
a

⌉

, where a depends on the

use of the alpha channel. In applications involving only opaque ma-

terials a = 4, because an RGBA vector can store four sharp basis

coefficients; otherwise, a = 3. The cost of computing RGB coor-

dinates is the cost of reading coefficients from the render texture(s)

plus the cost of a 3×m matrix-vector multiplication at each pixel.

Because these costs are likely to be dominated by the memory oper-

ation, we would expect that the total cost as a function of m would

approximate a step function with a width of 3 or 4.

At any moment the performance of a real-time rendering ap-

plication can be limited by computation on the CPU or vertex or

fragment shading on the GPU. A conservative estimation of the real

cost of rendering with sharp basis coefficients would therefore be

the cost incurred by an application that: 1) requires minimal CPU

computation; 2) renders as little geometry as possible; 3) has a sim-

ple lighting model; and 4) reads the reflectance properties of every

fragment from GPU memory. Table 1 shows the costs, relative to

RGB rendering, of three spectral rendering methods in an applica-

Table 1. Relative rendering costs.4

61 point m

RGB samples 4 5 6 7 8 9

1.00 27.6 orthonormal basis

3.21 6.51 23.0 70.4 124 259

sharp basis

1.22 1.22 1.22 1.51 1.51 1.56

tion that meets these criteria, the rendering of a 1024×768 textured,

full-screen quad with simple ambient lighting. Although the costs in-

curred by rendering with sharp basis coefficients shown here range

from 22% to 56% above the cost of RGB rendering, the cost in a

typical application should be significantly lower.

4Platform: Intel Core i7-970 CPU, Ubuntu 12.04 (AMD64, Linux kernel
3.5.0-40-generic), GeForce GTX 580 (NVIDIA driver version 295.53 with
OpenGL 4.2.0). The alpha channel was reserved for transparency.
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Discussion and Conclusion
The method of constructing T by specifying evenly spaced

sharpening intervals is unreliable. The approximations formed with

the resulting bases are less accurate, and accuracy is not necessarily

improved by simply increasing dimensionality. The same is true of

methods that optimize sharpness. Furthermore, as shown in Fig. 1,

sharpness of Q̃ matters more than that of Q̃+, contrary to method of

Drew and Finlayson, who sharpen the pseudoinverse. The accuracy

of their method is likely a consequence of the implicit sharpening of

Q̃. Using PSO to find good sharpening intervals, which in general

are neither uniform nor evenly spaced, can yield accurate results

that do improve with dimensionality, but it is much less efficient

than gradient-based NLP methods, as it involves m different m×m

eigenvector problems and the evaluation of p · q residuals at every

2m-dimensional point on the trajectory of each particle in a swarm.

In this work we optimize for spectral accuracy without consid-

ering its effect on color difference. This choice is necessary in some

applications, for instance when rendering interference effects, such

as iridescence. Nevertheless, a number of methods exist for improv-

ing the color accuracy attained with finite linear models, such as

weighted PCA [13]. For applications that use spectral information

exclusively to predict color, it would be useful to investigate these

methods in combination with those described here.

The use of the CIEDE2000 color difference formula to com-

pare pixels in moving images is questionable. One measure of

video image difference is SV-CIELAB, an extension of CIELAB

that addresses the effect of spatio-temporal structure on color ap-

pearance [10]. To provide a more meaningful measure of color ac-

curacy, a number of scenes containing materials with different re-

flectance characteristics could be constructed, such as indoor or out-

door scenes containing flowers, manufactured materials or human

skin, all illuminated by a variety of sources. Videos generated from

these scenes could then be compared using SV-CIELAB to measure

differences between sharp basis approximations and ground truth.

Spectral rendering is essential in computer graphics applica-

tions requiring accurate color prediction, examples of which are

found in optics, architectural rendering, industrial design, manufac-

turing and product marketing. In non-photorealistic visualization,

spectral rendering can exploit metamerism to increase information

density by causing colors to change meaningfully with illumina-

tion [2]. The efficiency gained by rendering with sharp basis coeffi-

cients permits these applications to operate in real time at a cost that

is only a fraction above that of RGB rendering, even when spectra

are represented at resolutions higher than 5 nm, since the method’s

O(m) complexity is independent of spectral sampling resolution. We

believe that spectral rendering also has interesting and useful appli-

cations as a creative tool in contexts such as computer games or

computer-generated imagery used for special effects in films and

television, not only for the many more degrees of freedom that it

offers in the design of lighting and reflectance properties, but also

for the possibility of using the spectra of familiar lights and materi-

als in an intuitive way as starting points for creative variations.

Acknowledgements
The author is grateful to the following people for discussions

and suggestions: Michael H. Brill, Charles Card, Bruce Kapron,

Paul Lalonde, Wu-Sheng Lu, Jan Meseth, George Tzanetakis and

Brian Wyvill. This research was partially funded by the GRAND

NCE as part of the PARALLEL project.

References
[1] ASTM International. Publication No. E308-12: Standard practice for

computing the colors of objects by using the CIE system, 2012.

[2] S. Bergner, T. Moller, M. Tory and M. Drew. A practical approach to

spectral volume rendering. IEEE Trans. Vis. and Comput. Graphics,

11(2):207–216, 2005.

[3] C. F. Borges. Trichromatic approximation method for surface illumina-

tion. J. Opt. Soc. Am. A, 8(8):1319–1323, 1991.

[4] G. Buchsbaum. A spatial processor model for object colour perception.

J. Franklin Inst., 310(1):1–26, 1980.

[5] Central Bureau of the Commission Internationale de l’Eclairage (CIE).

Publication No. 142-2001: Improvement to industrial colour-difference

evaluation, 2001.

[6] M. S. Drew and G. D. Finlayson. Spectral sharpening with positivity. J.

Opt. Soc. Am. A, 17(8):1361–1370, 2000.

[7] M. S. Drew and G. D. Finlayson. Multispectral processing without spec-

tra. J. Opt. Soc. Am. A, 20(7):1181–1193, 2003.

[8] M. D. Fairchild and G. M. Johnson. METACOW: A public-domain,

high-resolution, fully-digital, noise-free, metameric, extended-dynamic-

range, spectral test target for imaging system analysis and simulation. In

IS&T/SID 12th Color Imaging Conference, pp. 239–245, 2004.

[9] G. D. Finlayson, M. S. Drew and B. V. Funt. Spectral sharpening: Sen-

sor transformations for improved color constancy. J. Opt. Soc. Am. A,

11(5):1553–1563, 1994.

[10] K. Hirai, T. Mikami, N. Tsumura and T. Nakaguchi. Measurement

and modeling of chromatic spatio-velocity contrast sensitivity function

and its application to video quality evaluation. In IS&T/SID 18th Color

Imaging Conference, pp. 86–91, 2010.

[11] J. Kennedy and R. Eberhart. A new optimizer using particle swarm

theory. In Proc. Sixth Intl. Symposium on Micro Machine and Human

Science, pp. 39–43, 1995.

[12] O. Kohonen, J. Parkkinen and T. Jääskeläinen. Databases for spectral
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