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Abstract 
We introduce a theoretical framework for measuring the 

information content in the edges extracted from a color image. The 

main difficulty in estimating the amount of information 

(differential entropy [1, 2]) in an image signal is to fit an 

appropriate probability mass function to the trichromatic image 

data. To estimate the amount of information in the edges extracted 

from a color image, we first convolve the image with a derivative 

filter. By fitting a Kotz-Type probability distribution to the 

convolved image, we then estimate the differential entropy of the 

edge coefficients as a measure of the uncertainty involved in the 

edge content of a postreceptoral chromatic image. The proposed 

estimation of differential entropy provides an efficient means of 

processing the edge content information under a variety of natural 

illuminations, which might be further used as a quantitative 

measure for evaluating color constant image retrieval.  

Introduction 
Human visual system provides an efficient means of 

processing the color information of reflecting surfaces by 
discounting the contribution of illumination to the chromatic 
content of the image. This ability is called color constancy. In 
1983, Gilchrist et al. [3] proposed that the edge content of a scene 
is critical for the visual system to decompose a scene into the 
components of reflectance and illumination. Computational models 
of lightness constancy are typically based on the assumption that 
illumination changes involve smooth variations in luminance level 
[4-6]. Then it is believed that the effects of illumination occur at 
higher level of spatial frequencies in a scene.  

In the context of color constancy, the mechanism of visual 
system and the capability of an observer in representing constant 
colors are of particular interest [7]. Implementation of edge 
detection algorithms and image gradient [4, 8] were proposed as a 
computational approach to illumination detection based on the 
general scheme of Lands’ Retinex model [6]. On the basis of von 
Kries diagonal transformation hypothesis, edge-based color 
constancy methods were proposed based on the assumption that 
the average of gradient coefficients in a scene under neutral 
illumination corresponds to an achromatic patch [9, 10]. Edge-
based algorithms in color constancy have performed decently in 
detecting the color vector of illumination particularly when the 
signal-to-noise ratio of a scene is above medium [11]. Concerning 
the importance of edges in detecting illumination, it is noteworthy 
to mention that convolving an image with a high-pass derivative 
filter can extract a higher level of special frequencies in a scene. 

Then spatial frequencies in a scene appear to be crucial for the 
visual system in illumination detection.  

The postreceptoral processing of color information in an 
opponent color system optimally removes the redundant 
information caused by correlations among receptoral cone 
responses due to overlap in the cones’ spectral sensitivities [12]. 
Nieves et al. [13] found that the magnitude of the three post-
receptoral Luminance, Red-Green and Blue-Yellow edge contrast 
changes was almost constant across daylights. However, they 
noted that the normalized edge contrasts in the Lum, RG, and BY 
opponent channels decreased by illumination changes up to 9000 
K, before becoming almost constant beyond 10,000 K (Fig.4 in 
Ref. 13). 

Considering a high threshold of spatial frequencies for the 
illuminant effects in a scene, in the present research, we are 
particularly interested in finding out how much information is 
captured by the gradient edges under different natural 
illuminations. The amount of postreceptoral information of the 
edges in a natural scene is estimated by transformations of LMS 
cones responses to Luminance (Lum) and the two opponent 
chromatic responses, RG and BY.  

Image Formation 
A computational simulation of image formation was carried 

out using different hyperspectral images. The LMS cone responses 
at a pixel (x,y) in an image with spectral reflectance );,( λyxr  can 
be calculated under illumination )(λe  by, 
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in which )(λl , )(λm , and )(λs  are the Smith and Pokorny cone 
sensitivities [14] at wavelength λ , and the illumination is assumed 
to be constant over the scene. The LMS receptoral image was then 
transformed to a cone-opponent image representation using a 
simple approach as follows [12, 15]: 
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where, Lum  is luminance value, and RG  and BY  are the two 
perceptual chromatic axes of opponent colors at pixel (x,y). 

The postreceptoral image, ),,( byrglumI , can be convolved 
with a gradient filter, f , for extracting the edges, 

],,[ f
by

IfrgIf
lum

I ∗∗∗ σσσ
 (3) 

236 © 2013 Society for Imaging Science and Technology



 

 

where, σ  is the standard deviation of a Gaussian filter, σ
G , with 

which the image, I , is convolved, as σσ
GII ∗= , for local 

smoothing.  

Edge Information Content 
The difficulties in estimating the information content in a 

scene pertains to the way in which the entropy is estimated for a 
discretized random variable of pixel intensities in a scene. Field & 
Chandler [16] proposed a computational method for measuring the 
amount of information corresponding to the phase and power 
spectra of a natural scene. Due to computational complexity, 
however, they implemented the method for a relatively small patch 
size. The problem of estimating the information content of an 
image is even more pressing when dealing with a three 
dimensional chromatic image. Aiming at identifying the amount of 
information captured by colors in a scene, Franch & Foster [17] 
studied different estimation techniques for measuring the discreet 
entropy of a scene by partitioning the space of continuous RGB 
variable.  

Edge Statistics 
The edge coefficients of an image are distributed in a more 

kurtotic manner than a Gaussian distribution. Figure 1 represents 
typical contours of a log-histogram of the distribution of the 

)- ( byrg  postreceptoral edges extracted from the 
image, ),,( byrglumI , under neutral daylight illumination with 
CCTs ~ 6500 K. It can be seen that a multivariate heavy-tailed 
elliptically symmetric probability distribution can be fitted well 
into the data of the edge coefficients. Similar representations of the 
distribution can be found for other two sets of postreceptoral 
variables, i.e. )- ( bylum , and g)- ( rlum . Chakrabarti et al. [18] 
fitted a radial exponential distribution to the convolved image with 
a derivative filer. We propose a similar Kotz-Type probability 
density function [19], 
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of n-dimensional multivariate random variable, ],,[ 1 n
xx K=x , in 

which, ])2/(/[)]2/([ 2/2/ nn nnkc πθθ θ ΓΓ= , and )(⋅Γ  is Gamma 
function. The maximum likelihood estimation of the parameters in 
Kotz-type distribution was discussed by Naik and Plungpongpun 
[20]. 

 

  
Figure 1. A typical log-histogram of the distribution of the postreceptoral edges 

extracted from a natural scene under neutral illumination. 

Differential Entropy 
The differential entropy of a probability distribution, )(xp , of 

a multivariate random variable, ],,[ 1 n
xx K=x , is defined as, 

xxxx dppH ∫−= )(log)()( , (5) 

in which )(xp  is the probability mass function [21]. It can be 
proved that the differential entropy, )(xH , of the Kotz-type 
probability distribution, ),;( Σµxp , in Eq. (4) is, 

cnH log2/)( −= θx  (6) 

A special case of Kotz-type distributions is multivariate Gaussian 
distribution, where 5.0=k and 1=θ , for which, 
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is another special case of probability distribution of Eq. (4), where 
1=k , 5.0=θ , and 1=n , and the entropy of which is, 

.2log1)( σxH +=  (9) 

The mutual information, MI, can then be measured by the 
following equation, 

)()()( xx HxHMI
i

i
−=∑ , (10) 

in which )(
i

xH  is the entropy of the univariate random variable 

i
x , measured by Eq. (9). 

Experiment 
We used a total of 50 hyperspectral images, consisting of 29 

natural scenes collected at the Bristol University [22], 12 images 
gathered by Ruderman et al. [12], and 9 spectral images of 
nonurban scene collected by Foster et al. [23, 24]. The LMS 
response of each image at a pixel was computed under 140 outdoor 
illuminations with CCTs from 2,900 K to 36,660 K (Fig. 2). The 
images were also normalized by the maximum value in a scene to 
keep the range within 0 to 1. The postreceptoral image, 

),,( byrglumI , was then computed using Eq. (2), and afterwards 
the postreceptoral edges were extracted as explained in Eq. (3).  

  
Figure 2. The spectral power distributions together with the chromaticity 

coordinates of 140 outdoor illuminations under which the images were 

rendered.  

The entropy, )(xH , and mutual information, )(xMI , of 
postreceptoral edges, where x  represents the ),,( byrglum  
variable, were measured for each natural scene rendered under 140 
outdoor illuminations. Since we are interested in the information 
content along edges in natural scenes, the average of the measured 
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entropies and mutual information across the all 50 images can be 
calculated for each illumination separately. In the present work, we 
computed the average of the 50 measured entropies and mutual 
information under each outdoor illumination. Figure 3 shows the 
results of the average entropy and mutual information of the 
postreceptoral edges as a function of the CCT of the illumination 
under which the scene was rendered. It can be observed that 
mutual information decreases rapidly as CCT increase up around 
10,000 K. Besides, the information content, )(xH , increased up to 
around 10,000 K and then slightly decreases. The results are 
consistent with Nieves et al. findings [13] which state that edge 
contrasts were almost constant for the postreceptoral mechanism in 
daylight with CCT above 10,000 K. 

  
Figure 3. The average of mutual information and entropies (in nats) of 

postreceptoral edges across the all 50 natural scenes versus the correlated 

color temperature (CCT) of illuminations.  

In order to investigate how changes in natural illumination 
influence the entropy and mutual information of edges in the 
postreceptoral domain after adaptation, the modified postreceptoral 
responses were computed as [12, 13], 
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and 〈⋅〉 is the mean operator. Figure 4 shows the distribution of the 
modified postreceptoral edges extracted from a natural image 
under the neutral illumination (the scene in Fig. 1). As shown in 
Fig. 4, the redundancy between edges in the postreceptoral 
mechanisms measured by Eq. (11) decreased comparing with the 
responses calculated by Eq. (2). 

  
Figure 4. A typical log-histogram of the distribution of edges extracted from the 

modified postreceptoral responses for the scene shown in Figure 1, under the 

neutral illumination. 

Figure 5 represents the average entropy and mutual 
information of the modified version of the postreceptoral edges 
versus the CCT of the illumination under which the scene was 
rendered. According to the results of the information content in the 
edges of the modified postreceptoral responses, the entropy and 
mutual information changed as a function of CCT. In most of the 
cases, the mutual information represented a minimum value around 
3600 K to 8000 K. The entropy of the modified postreceptoral 
edges decreased in general as the CCT of the illumination 
increased. As can be seen in Fig. 5, the mutual information of the 
modified postreceptoral edges represents a minimum value at CCT 
around 5000 K.  

  
Figure 5. The average of mutual information and entropies (in nats) of edges 

extracted from the adapted postreceptoral responses across all 50 natural 

scenes versus the correlated color temperature (CCT) of illuminations.  

Discussion 
According to previous results, mutual information decreases 

when the visual information ascends the visual pathway from 
receptoral to post-receptoral stages [15]. Besides, as daylight 
changes, chromatic and luminance edges also change but only by a 
few percent. Considering the vast range of different daylight CCTs 
the edge contrast change rate is probably not visually relevant [13]. 
However, the amount of information shared by the edges in the 
three cone-opponent mechanisms decreases rapidly up to 10,000 
K, followed by an almost constant magnitude for illuminations 
with CCT above 10,000 K. The entropy in cone-opponent edges 
represents a maximum value around 10,000 K (Fig. 3). For the 
daylight illumination with CCT above 10,000 K, the magnitude of 
entropy in cone-opponent edges slightly decreases.  

The results of the analysis of the information content in the 
edges from the modified postreceptoral mechanism based on Eq. 
(11) were different from that of obtained from Eq. (2). At a first 
glance it could be a stunning result because of translation and 
scaling invariance of the mutual information. Nevertheless the 
whole nature of the data was changed by the logarithm 
transformation on Eq. (12) and thus results for MI of adapted and 
unadapted are different. The information shared by adapted 
postreceptoral responses decreased for the edges extracted from 
scenes under daylight with CCTs around 3,600-8,000 K. It seems 
that the optimal daylight for constant color falls within the range of 
CCT in which the mutual information is moderately small. 
Furthermore, the results of postreceptoral edges obtained from Eq. 
(2) show that the unadapted postreceptoral systems tend to 
moderately increase the information content in a scene around 
neutral illumination. A relatively small value in the amount of 
information shared by the postreceptoral responses was also 
observed around neutral illumination with CCTs ~ 6,500 K. It has 
been argued that information estimates shed light on the amount of 
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elements identified by human visual system in terms of their 
colors, independent of spatial position [23-24]. It should be further 
analyzed whether this statement holds when the visual signal is 
processed at a higher-level, e.g. scenes edges, under different 
illuminant changes. 

Conclusions 
A theoretical framework for measuring the entropy and 

mutual information of the edges extracted from a color image was 
introduced by fitting a Kotz-Type probability distribution to the 
edges of trichromatic image data. To estimate the amount of 
information in the edges extracted from a color image, we first 
convolve the image with a derivative filter. By fitting a Kotz-Type 
probability distribution to the convolved image, we then estimate 
the differential entropy of the edge coefficients as a measure of the 
uncertainty involved in the edge content of a postreceptoral 
chromatic image. The proposed estimations were analyzed by 
processing information content in the edge under a variety of 
outdoor illuminations. Considering the minimum value of CCT 
5,000 K at which the modified postreceptoral edges represented an 
average minimum value of mutual information, finding the optimal 
daylight to account for constant color representation still remained 
unsolved. Thus, it cannot be concluded that adapted color 
mechanisms can discount illumination changes using the 
information content in the edges. However, the entropy in the 
edges of postreceptoral mechanisms represented a moderately 
higher magnitude around neutral illuminations with CCTs ~ 6,500 
K. In order for visual system to represent constant color by 
discounting the contribution of illumination, further investigation 
is necessary to verify whether the information content in the edges 
of a scene plays an important role in possessing this fascinating 
ability. 
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