
 

Integrated Color Matching Using 3D-distance for Local Region 

Similarity 

Ran Shu, Ho-Gun Ha, Dae-Chul Kim, and Yeong-Ho Ha                                                                                                                                                    
School of Electronics    Engineering, Kyungpook National University, Daegu, South Korea 

Abstract 
Color consistency in stereoscopic content is important for 3D 

display systems. Even with stereo cameras of the same model and 

with the same hardware settings, complex color discrepancies 

occur when acquiring high quality stereo images. Global 

matching can reduce global color discrepancies, but it is not 

sufficient with local color discrepancies due to different objects 

having different reflections and imaging models where a more 

exhaustive and precise process is needed. Therefore, the local 

matching method is added for reducing local color discrepancies. 

In this paper, we propose an integrated color matching method 

that uses an estimated 3D-distance for the stage of local matching. 

The distance between the current pixel and the target local region 

is computed using depth information and the spatial distance in 

the 2D image plane. The 3D-distance is then used to determine the 

similarity between the current pixel and the target local region. 

The overall algorithm is as follows. First, the cumulative 

histogram matching is introduced for reducing global color 

discrepancies. Then, the proposed local color matching is 

established for reducing local discrepancies. Finally, a weight-

based combination of global and local matching is computed. 

Experimental results show the proposed algorithm has improved 

global and local error correction performance for stereoscopic 

contents with respect to other approaches. 

Introduction  
Movies and televisions with 3D technology can provide users with 

improved viewing experience over traditional 2D technology 

thanks to high interactivity and photorealistic image quality. 

Recent research on 3D visual systems, such as three dimensional 

television (3DTV)[1], and free viewpoint television (FTV)[2], 

these technology are emphasized to fulfill the demand of 

experiencing 3D perception than previous 2D video systems. In the 

current 3DTV system, synchronized left and right stereo images 

are presented respectively to two eyes for acquiring 3D scene. 

Therefore, the color consistency of stereoscopic images is 

important for perceiving 3D scene and reducing visual 

discrepancies. 

Color discrepancies in stereoscopic images are introduced due to 

three different reasons. The first kind of discrepancy is introduced 

by using non-calibrated stereo cameras, and it can be recovered by 

calibrating camera to the same settings. Discordant radiometric 

characteristics of cameras also mainly induce global color 

discrepancies, and this global error can be recovered by global 

matching approaches. Finally, local errors are introduced by the 

different angle of incidence of light on each camera. However, 

global matching methods cannot recover this kind of error, because 

different objects have different reflections and imaging models, 

needing a more accurate correction method. 

 Many approaches have been proposed for color matching, mainly 

divided in global matching and local matching. Previous global 

matching approaches include those proposed by Chen using 

histogram matching[3], and Fecker derived a mapping function 

from the cumulated histograms of both images[4]. Also, Hwang 

used a key point detector[5] and Doutre proposed a block 

matching algorithm[6] for modeling transformation rules of color 

correction. Mantiuk suggested the use of adaptive tone mapping[7], 

Cherdhirunkorn proposed a multispectral imaging technique[8], 

and  Reinhard used a general color transfer method[9]. These 

global matching does not search correspondences between image 

pairs, so their runtimes are very short. Yet, local color error is left 

untouched. 

Local matching methods are tailored to reduce local color error. 

Wang assumed that every pixel in a region segmented by meanshift 

color segmentation[10] has the same color distortion 

characteristics. Therefore, one color transformation rule is 

presented for each corresponding segmented region. Yet, this 

assumption is not correct, because the objects in natural images 

mostly have different color distributions. Yu proposed a hybrid 

color matching method[11] which can correct some local errors 

and maintain the color distribution well, because the color 

transformation rule is different for each pixel and the color 

mapping functions for each pixel are based on the relationship with 

the target local region. This relationship is based on the color 

distance and the spatial distance between the current pixel and all 

the target local regions. Yet, the use of the spatial distance alone is 

not correct. The spatial distance can just measure the 2D-distance 

on the image plane, while different objects with short image plane 

distance may have very different depths, thus leading to a failure in 

discrimination. Fig. 1 shows this error.   

Figure 1 shows the results of the histogram matching and the 

hybrid method. The histogram matching can correct the global 
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(c)                                 (d) 
Figure 1. The local error is retained by uncorrected spatial distance. (a) the 

reference image, (b) the distorted image, (c) the Chen’s  histogram matching 

method, (d) the Yu’s  hybrid method. 
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color discrepancies while local color discrepancies such as the 

mask and the green cone region are obviously untouched. The 

hybrid method can reduce the local color error in the mask region, 

but the local color error in the cone region is retained due to the 

failure of using the spatial distance for measuring the reality 

distance between the current pixel and sample features, because 

neighborhood regions of the cone is almost regions of mask or red 

cones, so the color correction on the cone is effected a lot by the 

color of mask or red cones and resulted color discrepancies in 

green cone region. Therefore, the proposed local color matching 

uses the 3D-distance measure for reducing the local color 

discrepancies. 

In this paper, a local matching method based on 3D-distance is 

proposed for measuring region similarity. The used of a 3D-

distance allows us to distinguish objects or regions with different 

depth and short spatial distance. The organization of the remainder 

of this paper is as follows. Firstly, Yu’s hybrid method is 

introduced. Then, the proposed color matching is presented. 

Finally, experimental results are shown. 

Previous color matching method 
The same types of stereo cameras are well calibrated at first. Then, 

color discrepancies in stereo image can be categorized to global 

and the local color discrepancies. Therefore, Yu proposed a hybrid 

color matching method for reducing the global and the local 

discrepancies, simultaneously. Global color discrepancies are 

corrected by the modified histogram matching method, and local 

color discrepancies are reduced by a local matching method. 

Global matching method 
The chosen algorithm for the global matching is histogram 

matching and it tries to adapt the color distributions between stereo 

images. This method is only based on statistical distributions and 

does not use the spatial position information of pixels. Yu 

proposed a modified histogram matching method based on the 

luminance image. Then, histogram matching for each color 

channel is processed after luminance matching. 

Local matching method 
Global color discrepancies between stereo images can be corrected 

by global color matching method that images are treated as a whole 

process and corrected by finding a color transfer function or 

mapping table, but local color discrepancies are retained due to 

different objects or even same object may has the different 

reflection and imaging models, which puts requirements for a more 

deliberate correction. Therefore, different color correction 

functions are presented for pixels of different positions in the local 

region. In the previous method proposed by Yu, which 

correspondence points are firstly searched and filtered in order to 

determine color correspondence. In this method, it is important to 

store spatial position of each color correspondence, because a 

transformation rule for the current pixel is generated by using a 

weighting of spatial and color distance to color correspondences. 

In this paper, the proposed local matching method use two 

measures those called the 3D-distance and the color distance to 

find the target local region for correcting the current pixel. Figure 

2 shows the concept of measures for controlling the effect of the 

color correction in the local matching. However, the current pixel 

is corrected by all color correspondences, but proper color 

correspondences those are nearby the current pixel may have the 

 
Figure 2. The concept of measures for weighting color correction functions in 

local matching. 

same color correction function introduce the biggest effect to the 

current pixel, while the unrelated color correspondences introduce 

little or no effect to the current pixel. Therefore weighting 

functions for each pixel are 
1 2, ,..., kw w w  which is determined by 

the color and spatial distance to each color correspondence. Finally, 

local color discrepancies in the distorted image are corrected by 

the target local region, and the color distribution of local regions is 

retained by using different mapping functions for different pixels. 

In the first step, SIFT is used for finding corresponding features in 

stereo images, and RANSAC(RANdom SAmple Consensus) is 

added to reduce the outliers of corresponding features[12]. Figure 

3 shows the SIFT features in the reference and the target image, 

and the corresponding features after RANSAC 

  

            

(a) 

 

(b) 

 

(c) 
Figure 3. The corresponding SIFT features between reference and distorted 

image are detected by SIFT. (a) Left is the reference image and the right is the 

distorted image, (b) detected corresponding features by SIFT method, (c) the 

corresponding features between stereo images. 

222 © 2013 Society for Imaging Science and Technology



 

are also presented. But SIFT features are mainly dark corner points 

those are lack of the color information, therefore, sample feature 

stage is introduced. An initial SIFT feature is extracted and 8 

neighboring candidate pixels are defined. Then, SND (Sum of 

Normalized Difference) between the left candidate temple and the 

right candidate temple is calculated, and the candidate temple is 

presented by the window centering at the candidate pixel. And the 

acquisition method of the sample feature which is selected from 

the candidate pixel. The SND of the k-th candidate feature is 

calculated at Eq. (1). 
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where k means the k-th corresponding feature. If the SND is lower 

than a threshold value, this k-th candidate feature is added to the 

sample feature set. Finally, a CD-LUT (Color Difference Look-up 

Table) is calculated which contains the color difference between 

each pair of sample feature and the color difference is calculated in 

XYZ color space.  

The spatial distance and the color distance between the current 

pixel and the sample features are collected for weighting the CD-

LUT. The previous method can introduce a local error if objects 

get a short spatial distance in the image plane, because the spatial 

distance cannot present the accurate information for determining 

the weighting function to the current pixel. Therefore, the 

proposed local matching method can distinguish objects with short 

spatial distance in the image plane. It is presented by using the 3D-

distance which measures the reality distance between the current 

pixel and sample features. The 3D-distance is calculated using the 

spatial distance and the depth distance between the current pixel 

and the sample features. Figure 4 shows the situation of the failure 

local correction by the previous method, that there are two sample 

features with the short spatial distance to the current pixel. 

Therefore, the current pixel gets same weighting from them, which 

causes the failure local color correction. Figure 5 shows the 

flowchart of the proposed integrated color matching method. 

Proposed integrated color matching 
In this paper, the global matching is presented by a cumulative 

histogram matching method proposed by Fecker, that a more 

accurate result can be presented. Firstly, the stereo image 

 

 
Figure 4. The situation of the failure local correction by the previous method. 

pairs have no rapid change on the chrominance and the luminance 

variation. Therefore, the cumulative histogram matching method 

can be used in stereo pairs. The histogram matching works on a 

stage of shifting the target histogram to the reference histogram. 

For this reason the characteristics of the reference histogram can be 

not modified. But the cumulative histogram matching proposed a 

method by deriving a mapping function from cumulative 

histograms of both images. Therefore, the characteristics of the 

reference histogram can be retained. Then the proposed local 

matching uses the 3D-distance for determining local region 

similarity is introduced as follows. 

Extraction of roughly depth information 
The depth distance between the current pixel and the sample 

feature is calculated for obtaining 3D-distance. Klaus presented a 

segment-based stereo matching method[13], and it can obtain a 

robust disparity plane. Firstly, this method utilized a mean-shift 

color segmentation method[14]  on the reference image for 

extracting color homogenous regions. Then, reliable 

correspondences are calculated by a self-adapting dissimilarity 

measure which uses the local window-based matching method. 

Next, the corresponding disparity plane is derived by applying a 

novel robust plane fitting method and a consecutive refinement 

step. Finally, the disparity map is generated by approximating 

optimal disparity plane assignment. Figure 6 shows the resulting 

depth map, which the depth information of each pixel are used for 

3D-disatance calculation. 

Proposed 3D-distance calculation 
3D-distance can be used as one measure to find the adjacent 

sample feature for correcting the current pixel. The spatial distance 

in the image plane can just present a distance which means the 

horizontal distance between two points in the image plane. 

Therefore, two objects with the short spatial-distance may carry a 

long 3D-distance. Figure 7 shows the ideal of the spatial-distance 

and the 3D-distance between two points. Then, the 3D-distance 

can be used for find the adjacent sample feature in the same object 

or region. 

 

 
Figure 5. The flowchart of the proposed integrated color matching method. 
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Figure 6. The depth disparity map(parameters setting in mean shift: hr =7, 

hs=10, M=30). 

Stereo images have the information of the depth for each pixel, and 

it can be used for calculating the 3D-distance between sample 

features and the current pixel. In other words, the current pixel can 

be corrected by the adjacent local region in the reference image. 

Therefore, the first measure for detecting the adjacent sample 

feature is the 3D-distance. The 3D-distance is calculated from the 

spatial distance in the image plane and the depth distance between 

two pixels. Because the spatial distance is orthogonal to the depth 

distance, the 3D-distance 
3dD can be calculated by the 

Pythagoreans theorem as follows. 

2 2

3d spatial depthD D D= +
 (2) 

The spatial distance and the depth distance between current pixel 

and sample feature are calculated as follows: 
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where ( ),current currenti j is the current pixel, and ( ),sample samplei j is the sample 

feature, dep is the depth value,  and ,spatial depthT T  is the value for 

normalizing the spatial distance and the depth distance to 1. 

Local color correction by weighted CD-LUT 
All pixels of distorted image are corrected by CD-LUT in the local 

matching step, and the local error can be reduced by the local 

matching. CD-LUT stands color differences between all sample 

feature pairs, but adjacent sample features and unrelated sample 

features give different effect for the current pixel. Therefore, two 

measures are considering for giving the different weight to 

different CD-LUT, which means CD-LUT of different sample 

features have different weight for correcting the current pixel. Two 

measures are the 3D-distance and the color distance between the 

current pixel and sample features. The weighting of the 3D-

distance between two points which means the bigger weighting has 

the closer 3D-distance. 
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where ( ),i j is the current pixel, k denotes the k-th sample feature. 

The weighting of the color-distance is presented in L*a*b* color 

space as follows. 

 

(a) 
 

 
   (b) 

 
Figure 7. The definition of the 3D-distance is presented. (a) the spatial 

distance between the current pixel and the sample feature in image, (b) the 

definition of the 3D-distance. 
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In equation (5) ( ), , ,i j k c
C is the color distance between the current 

pixel and the k-th sample feature. 
3dthreshold is the threshold for 

excluding the sample feature with big color difference to the 

current pixel. The final weighting of the k-th sample feature to the 

current pixel is presented and is normalized to make the sum of 

weightings be 1. 
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In equation (6), U is the total number of sample features. Finally, 

the local correction resulting for the current pixel is presented as 

follows. 
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where the color difference 
kD  is calculated by the CD-LUT of the 

k-th sample feature. 
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(a)                            (b) 

       

(c)                            (d) 
Figure. 8. The comparison of the previous hybrid method and the proposed 

method. (a) the reference image, (b) the distorted image, (c) the Yu’s hybrid 

method, (d)  the proposed method. 

Combination of global and local matching 
Final step is used for combination the effect of the global and local 

matching for each pixel in the distorted image. The global 

matching shows a fairly good result in reducing global color 

discrepancies, but the local region still retains local errors. As 

sample features are detected in the local region where get many 

feature information, such as face and so on. Therefore, local 

matching is used for reducing local color errors. Finally, corrected 

color is presented by a weight-based combination of the global and 

the local matching.  
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where a  is a scale factor which can control the effect of the local 

matching. 

Experimental results 
The evaluation of the proposed method is performed on 3 pairs 

stereo images, the global and the local discrepancies are added to 3 

pairs of stereo images from the Middlebury stereo datasets[15] by 

Photoshop software. Those stereo images were captured by a well 

calibration stereo camera system. The proposed method shows the 

good performance on the correction of the global and local color 

discrepancies and it is compared to the previous hybrid color 

matching method. Figure 8 and 9 shows the resulting of the 

proposed method and the previous hybrid method. The local error 

such as the mask and the green cone can be found after the global 

matching, and the Yu’s hybrid color matching method reduce the 

local color error on the mask region, but the cone is not corrected 

well. Finally, the color distribution of the cone is matched to the 

reference very similar. Figure 9 shows zoomed in results, we can 

see the color correction of the cone by proposed method is more 

similar to the reference image, and the 

              

(a)                           (b) 

              

(c)                           (d) 
Figure. 9. Images are zoomed in for showing preference on the local regions. 

(a) the reference image zoomed in cone region, (b) the distorted image zoomed 

in cone region, (c) the Yu’s hybrid method zoomed in cone region, (d) the 

proposed method zoomed in cone region. 

Table 1. Hue similarity of result images by various color 

matching methods. 

 

 

Table 2. MOSs of resulting images. 

 

 
 

global tone is closer to the reference image, and we measures the 

similarity of hue histograms[16] for evaluating the color correction 

performance. Table 1 shows the performance of the similarity of 3 

pairs stereo images. Preference test of 3D images was also 

conducted. 5 levels of rating scale were provided to the 8 

participants. Then, mean opinion scores (MOSs) were computed 

based on the ratings. The results are shown in table 2. The scores 

of the proposed method were generally higher than other methods 

Conclusion and discussion 
In this paper, we presented an integrated color matching based on a 

3D-distance. The proposed method presents satisfying color 

matching results by combining global and the local matching. The 

algorithm first performs global matching by cumulative histogram 

matching. Then, local matching is performed by a pixel-wise 

correction method considering the CD-LUT of all sample features 

where the 3D-distance and the color distance are used for 

weighting the CD-LUT of each sample feature. Experimental 

results show that the proposed method has improved performance 

compared to previous approaches. 
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