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Abstract
High dynamic range images require tone reproduction to

match the range of values to the capabilities of the display. For

computational reasons as well as absence of fully calibrated im-

agery, rudimentary color reproduction is often added as a post-

processing step rather than integrated into the tone reproduction

algorithm. However, in the general case this currently requires

manual parameter tuning, although for some global tone repro-

duction operators, parameter settings can be inferred from the

tone curve. We present a novel and fully automatic saturation

correction technique, suitable for any tone reproduction opera-

tor, which exhibits better color reproduction than the state-of-

the-art and we validate its comparative effectiveness through psy-

chophysical experimentation.

Introduction
Recent advances in both capture and display technologies al-

low images of a much wider dynamic range to be photographed,

manipulated and displayed, better capturing the light of natural

scenes and giving artists unparalleled freedom. Unlike preva-

lent consumer imaging pipelines though, no high dynamic range

(HDR) standard has yet emerged defining the precise range, for-

mat or encoding to be used. As such, HDR data often needs to be

compressed for display on most current displays, a process known

as tonemapping [15, 2].

The aim of this paper is to preserve the appearance and infor-

mation content of the image as much as possible while ensuring

that it can be displayed on the chosen display device. To achieve

that, tonemapping algorithms typically operate on the luminance

of the image with little to no consideration for the color informa-

tion present, leading to noticeable changes in the color appearance

of the image, as shown in Figure 1. Commonly, tone compressed

images acquire an over-saturated appearance when only the lumi-

nance channel is processed [12, 18].

Image appearance models, which can be seen as tone repro-

duction operators with integrated color appearance management

[7, 9, 16], aim to reproduce color appearance, but they are de-

signed with calibrated applications in mind and often come at the

cost of higher computational complexity due to spatially varying

processing. Despite their accuracy, these factors can limit their

general applicability.

Some solutions exist for correcting saturation mismatches af-

ter tone reproduction [12, 18]. This leads to computationally ef-

ficient correction, although we have observed that existing meth-

ods tend to create hue and luminance artefacts. Moreover, they

require manual parameter selection which is strongly image and

tone reproduction operator dependent. Recently, a psychophysi-

cal study was conducted for defining an automatic model to derive

the parameters necessary for such corrections, but only allows pa-

rameters to be predicted when the tone compression or expansion

function is global [12].

Instead, we propose a new approach for correcting saturation

mismatches after dynamic range compression. We base our algo-

rithm on insights from color science and on the observation that

the amount of desaturation can be inferred from the non-linearity

applied by the tone curve, irrespective of whether the tone re-

production operator was spatially varying or not. As such, our

approach is parameter-free and agnostic to the operator used for

mapping the dynamic range of the image or video. We find that

our algorithm reproduces saturation significantly better than the

current state-of-the-art.

Related Work
Differences in viewing conditions may result in significant

mismatches in perceived color, which can be attributed to idiosyn-

crasies of the human visual system. To ensure that the appearance

of a scene is correctly reproduced on a display, many issues will

have to be taken into account, all broadly belonging to the field

of color reproduction [8]. Image appearance models can be used

to reproduce images as a human observer would see them under

given viewing conditions [5, 16]. Such algorithms can be config-

ured to yield calibrated color reproduction, and therefore do not

require color post-processing. However, measurements of scene

and display conditions are needed as inputs to image appearance

models so that the human visual response can be accurately pre-

dicted. This requires specialist equipment such as photometers.

These algorithms also tend to be computationally expensive, fur-

ther limiting their use to offline processing.

Dynamic range mismatches between scenes and display de-

vices are therefore typically handled by tone reproduction opera-

tors. In essence, most of these algorithms focus on one dimension

of the color gamut, namely compression along the luminance di-

rection [15, 2]. Appearance effects are often ignored, leading to

images which may appear too saturated. This problem can be mit-

igated by combining tone reproduction and color appearance al-

gorithms [1]. However, this solution still requires calibrated data

and measured viewing conditions to drive the color appearance

component.

A more common approach to saturation reproduction is to

post-process the tone-mapped image, manually adjusting satura-

tion to levels that appear plausible. Perhaps the most well-known

technique for color correction involves the adjustment of color

values by means of a power function, according to user param-

eter p ∈ [0,1] [18]. Given an original high dynamic range im-
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Figure 1. The same HDR image was tonemapped with different operators (left - [10], right - [16]). The left tonemapped image is overly saturated, while the

tonemapping algorithm used on the right has reduced the saturation too far. With our method, both images are automatically corrected to have a very similar

appearance by considering their relation with the original HDR image. (Source image from Mark Fairchild’s HDR Survey)

age with input pixels Mo = (Ro,Go,Bo) specified in some linear

RGB color space, and its associated per-pixel luminances Lo, it is

first tonemapped with an operator f () that modifies the image’s

luminances, Lt = f (Lo). The color-corrected image Mc is then

produced with:

Mc =

(

Mo

Lo

)p

Lt . (1)

The primary drawback of this solution is that the selection of pa-

rameter p is both image and tone reproduction operator depen-

dent. As this formulation may also introduce undesirable lumi-

nance shifts, an alternative adjustment was proposed1 [12]:

Mc =

((

Mo

Lo
−1.0

)

p+1.0

)

Lt . (2)

Although this equation is claimed to produce smaller luminance

shifts, it may still create hue shifts [14]. Here, user parameter p ∈

[0,1] can be set manually with the same disadvantages as above.

Alternatively, the setting of p in either technique can be au-

tomated based on the slope of the tone curve at each luminance

level [12]:

p =
(1+k1)c

k2

1+k1 ck2
(3)

where k1 and k2 are constants2 and c is a factor indicating the

amount of compression or expansion applied. This factor is cal-

culated as the derivative of the tone curve:

c(log(Lt)) =
d

d log(Lo)
f (log(Lo)). (4)

We note that although in its original derivation f () was a simple

power function, it produces reasonable results as long as certain

conditions are met, most important of which is that the operator

needs to be global, i.e. spatially invariant. We view this as an

important limitation, as local tone reproduction operators often

allow better compression.

1In the remainder of this paper, we will refer to Equation (1) as
Schlick’s method, and Equation (2) as Mantiuk’s method.

2For Schlick’s correction: k1 = 1.6774, k2 = 0.9925. For Mantiuk’s
correction: k1 = 2.3892, k2 = 0.8552 [12].

Hue and Saturation Correction

The aim of tonemapping is two-fold; images need to be pro-

cessed so that their absolute luminance range is compressed, but

pixel relations also need to be altered to maximize visible detail,

therefore changing the contrast in the image. Changes to contrast

and luminance, however, often lead to changes in the appearance

of colors in the image and specifically in their saturation and hue.

Thus, our algorithm is designed to correct the image’s appearance

while minimizing luminance and contrast modifications.

Algorithm Overview

The input to the algorithm consists of two images given in

linear RGB space: the tone-compressed image Mt and the origi-

nal, unprocessed HDR image Mo as it contains the original satu-

ration and hue values that we aim to reproduce. The goal of our al-

gorithm is to modify Mt such that it matches the color appearance

of Mo in terms of hue and saturation, while preserving luminance

values from the tonemapped image Mt . Note that matching the

appearance of saturation requires active non-linear management

of saturation values to account for the Hunt effect.

Since in most cases accurate radiometric data is not avail-

able for HDR images, luminance values computed from the im-

ages will be inherently inaccurate. As such we focus on contrast

changes between the two input images and therefore normalize

both Mt and Mo before converting them to XY Z tristimulus val-

ues. The image data is then transformed to IPT as this color space

has better hue uniformity than CIE L∗a∗b∗ [4].

As we need separate access to lightness, hue and chroma,

we then convert to a cylindrical color space akin to CIE L∗C∗h∗

[19]. This space is based on IPT and therefore we will refer to it

as the ICh space, where I encodes lightness, C represents chroma

and h is a measure of hue. The lightness channel I is not further

processed, because this was the main purpose of the preceding

tone reproduction operator. The hue in the tonemapped image ht

is subsequently set to the hue ho of the original image, restoring

any hue distortions that may have arisen due to gamut clipping

during tone mapping.

The quantity that needs to be matched between high dynamic

range and tonemapped images is saturation s. However, the afore-

mentioned cylindrical color space produces chroma C. Nonethe-

less, we can adjust chroma on the basis of per-pixel saturation

values computed on both images.
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Figure 2. Comparisons between different variants of our algorithm, in par-

ticular comparing performance in CIE L∗C∗h∗ against the cylindrical version

of IPT, termed ICh, paired with two different saturation formulations, namely

s =C/L and s =C/
√

C2 +L2 (substitute L for I in the case of IPT).

Appearance Parameters
After the input images are normalized and converted to IPT ,

chroma and hue parameters are computed for both images. To

convert from IPT to a cylindrical color space ICh [19], we fol-

low standard procedure and leave the I channel unchanged while

setting hue h and chroma C as follows:

h = tan−1(P/T ) (5)

C =
√

P2 +T 2 (6)

Saturation s is commonly computed as s(C, I) = C/I. Re-

cently, however, an alternative formula was proposed that follows

human perception more closely [11]:

s(C, I) =
C

√

C2 + I2
(7)

Note, however, that to our knowledge application of this formula

in ICh is novel; its development was centered around CIE L∗C∗h∗.

The merit of using this formulation is shown in Figure 2.

Saturation Correction
Tone reproduction typically maps luminance values in a non-

linear manner. As a result, although the absolute luminance levels

of the tonemapped image are likely to be lower than the original

HDR scene if displayed on a conventional monitor, the relative

luminance of many pixels will be increased compared to their

surrounding pixels. To deal with this mismatch, we first scale

the chroma of the tonemapped image. This step scales Ct to ap-

proximately what it would be if the original HDR image had been

tonemapped in the ICh space:

C′

t =Ct
Io

It
(8)

Then, based on (7), we compute the ratio r between the saturation

of the original and tonemapped image, albeit that we compute the

latter using C′

t :

r =
s(Co, Io)

s(C′

t , It)
(9)

This ratio is then applied to chroma C′

t as a second factor to find

the chroma appropriate for the tonemapped image:

Cc = r C′

t = r
Io

It
Ct (10)

For convenience, in the following we will refer to the full adjust-

ment factor as:

r′ = r
Io

It
(11)

Finally, we reset the hue by copying values from the HDR

images (hc = ho). Together with the corrected chroma Cc, it is

combined with the lightness channel of the tonemapped image

Ic = It to produce the final corrected result, which can then be

converted back to RGB.

Evaluation
To assess the performance of our algorithm, we compressed

the dynamic range of many challenging scenes with different

tonemapping operators. We then processed the results with our

color correction method and compared our results against both

the automatic and manual versions of Schlick’s and Mantiuk’s

algorithms (Equations (1) and (2)) by means of psychophysical

experimentation.

Tone Curve Estimation
For Schlick and Mantiuk’s techniques we estimate the tone

curve from the image pair directly so that Equation (3) can be ap-

plied to estimate p. If a global tone reproduction algorithm is used

a one-to-one mapping between the original luminance Lo and the

tonemapped luminance Lt can be obtained. For spatially vary-

ing tone mapping operators, many different input levels may be

mapped to the same output level. To be able to infer a reason-

able approximation for parameter p in the automatic Mantiuk and

Schlick corrections, we compute the contrast factor c in (4) based

on the average luminance level in Lo that corresponds to each lu-

minance level Lt in the tonemapped image. To further enforce

smoothness, this computation is carried out on a down-sampled

version of the image and the resulting tone curve is filtered with a

Gaussian filter kernel3 .

In the following, we show the effect of our correction com-

bined with several tone mapping solutions as well as side-by-side

comparisons with other saturation correction techniques. The

comparative performance of saturation reproduction is also as-

sessed with a psychophysical experiment.

Results and Comparisons
The color correction method proposed in this paper is fully

parameter-free and aims to be applicable irrespective of the type

of processing that was applied to the image. The algorithm was

implemented in MATLAB, running on an Apple Macbook Pro

with an Intel Core 2 Duo processor running at 2.3 GHz. Although

our current implementation is not optimized for performance, typ-

ical examples tested at resolutions of around 1MP were processed

in approximately 5 seconds.

3Note that this approximation serves only for comparison purposes as
the relation between p and c is only formally defined for global tonemap-
ping operators.
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Figure 3. The Memorial image was tonemapped using both global and spatially varying tone mapping operators. The tone mapped images (top) obtain very

different appearances, which are corrected with our algorith (bottom). Although the tone mapped images have different luminance and contrast distributions, our

correction equalizes the color appearance between them. In particular, the different materials in the scene obtain a more natural appearance, notably the white

marble of the stairs or the gold leaf on the walls.

Our method corrects the saturation in the image on a per-

pixel basis. This ensures that even extreme changes in saturation

due to tonemapping or any other manual or automatic image pro-

cessing can be corrected. The quality of our algorithm is shown in

Figures 3 and 4. Note that if both the high dynamic range image

and the tonemapped image are individually normalized, the tone

reproduction process does not universally reduce the image’s dy-

namic range. Instead, some pixels are reduced in level, whereas

others are increased. As a result, some pixels require a commen-

surate decrease in saturation, while others need their saturation to

be increased.

Figure 3 shows that one effect of our method is that mate-

rial appearance can be correctly reproduced, irrespective of tone

reproduction operator. The gold leaf on the wall still appears as

gold for instance; an effect that is difficult to reproduce with other

methods that tend to create more washed-out colors. Figure 4

demonstrates that existing methods tend to desaturate parts of the

image that are both light and saturated, turning the yellow sign

and the shop interior white in the top images, and the sky grey in

the bottom images.

Psychophysical Evaluation
To assess saturation performance, we designed a 2-

alternative forced-choice experiment (2AFC) whereby two identi-

cally tonemapped images were post-processed with different sat-

uration correction algorithms and shown side-by-side on the dis-

play, underneath the high dynamic range input image as shown

in Figure 5a. A SIM2 HDR47E S 4K was used, which can emit

up to 4000 cd/m2. To allow prolonged stable and calibrated use,

we used a peak luminance of no more than 2500 cd/m2. The

background of the stimuli was set to 18 cd/m2 while the peak

luminance for the tonemapped images was 100 cd/m2. The left

and right 7 cm of the display were unused as we found luminance

reproduction to be less accurate in those regions. The display

was driven by an Apple Macbook Pro running Matlab using the

Psychophysics toolbox extensions [3] and employing a custom

OpenGL shader for driving the display in calibrated HDR mode.

A set of 8 HDR images were drawn from the HDR Pho-

tographic Survey [6] and were tonemapped with the global ver-

sion of the photographic operator [17] and a spatially varying

operator [10]. Subsequently, the images were post-processed

with three different saturation correction algorithms: the proposed

technique, as well as the automatic versions of the methods given

in (1) and (2). A stimulus then consisted of the HDR image, below

which two differently post-processed images were shown. Tone

mapping operators were varied between stimuli, but not within

stimuli. In each trial, the participant was asked to select the image

which matched saturation best to the HDR image.

Before starting an experiment, participants were shown writ-

ten instructions, followed by a short training session to familiarize

participants with the difference between saturation and other ap-

pearance phenomena. General feedback was solicited after the

experiment, which lasted on average 20 minutes.
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Figure 4. Comparisons between our new algorithm and Schlick and Mantiuk’s automatic corrections. The two images were tone mapped with a spatially

varying [10] and a global [17] operator and then processed with the three correction methods. The local variations of the spatially varying operator lead to very

strong local desaturation when images are processed with Schlick’s and in particular Mantiuk’s correction formulae.

Experiment: Evaluation of automatic algorithms The task

for the experiment was to match the impression of saturation be-

tween tonemapped color processed images and their HDR orig-

inals. Stimuli were created to compare our algorithm with the

automated version of Schlick and Mantiuk’s algorithm using

Li’s [10] and Reinhard’s [17] tone reproduction operators, leading

to a total of 48 trials per participant to account for all paired com-

parisons. There were 18 participants in this experiment, who were

between 23 and 53 years old, and all had normal or corrected-to-

normal vision as well as normal color vision.

We used a multiple comparison range test to determine if any

pairwise difference was significant. We have calculated the coef-

ficient of consistentcy ξ per image and per tonemapping operator.

For the photographic operator we find an average coefficient of

consistency of ξ = 0.78±0.1 (mean and standard deviation). For

Li’s operator we find ξ = 0.85± 0.08. Thus, we have obtained

overall high consistency, supporting the following findings.

Significance tests were calculated on the differences between

the scores of pairs of color correction methods. These differences

are considered significant if they are greater than a critical value

R which is defined as:

R =
1

2
Wt ,α

√

ut +
1

4
(12)

where Wt,α is the upper significance point for the Wt distribution,

t = 3 is the number of compared methods, and u is the number

of observations. At a significance level of α = 0.001, Wt,α values

Reinhard 2002
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Mantiuk

Schlick
R = 75

R = 53

R = 53

a. Experimental setup b. Results

Figure 5. a. The setup used in our experiment. b. Results from our

experiment, grouped by tone reproduction operator. Also indicated with a

horizontal line is the difference with the longest bar in each group at which

significance occurs.

is of 5.06, see Table 22 from [13]. Figure 5b shows the overall

results of our experiment.

When we assessed the overall performance, for each

tonemapping operator, over all images, we found statistical sig-

nificance for Li’s tone reproduction operator at significance level

α = 0.001, with critical value critical value R = 53, given u = 144

for 18 participants × 8 images. In this case our method was se-

lected significantly more often. This is visualized in Figure 5b

where we have drawn a horizontal line at a height 53 below the

maximum score, noting that the bars for Schlick and Mantiuk’s
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methods do not cross this line. For the photographic operator, we

found no statistically significant differences.

We have observed that Li’s operator on average requires

stronger saturation correction than the photographic operator. It

is therefore interesting to see that especially in the case of a local

operator our saturation correction method performs particularly

well. Moreover, for the photographic operator our algorithm per-

forms on par with the current state-of-the-art. Although for the

experimental evaluation only two tone mapping techniques were

included, our experiments indicate that our findings generalize

well to other operators, especially when the luminance channel

is processed in a locally varying way.

We also computed scores for the two tone mapping operators

combined. Here R = 75 as u = 288 (18 participants × 8 images ×

2 tone reproduction operators). Overall, our method was selected

significantly more often (α = 0.001). In essence, this means that

our algorithm matches the impression of saturation between tone

mapped images and their HDR originals measurably better than

the current state-of-the-art.

Conclusions
We developed a novel saturation correction algorithm for

the purpose of removing the often over-saturated appearance of

tonemapped images. Tone reproduction tends to be carried out on

a luminance channel, while leaving chromaticities unaffected. As

the appearance of saturation depends on relative luminance levels,

ideally saturation should co-vary with luminance changes when

applying tone reproduction operators. Nonetheless, it is possible

to post-correct saturation mismatches given the input and the out-

put images of a tone reproduction algorithm.

Our algorithm is based on recent insights into the design

of perceptually linear color spaces as well as a recent formula-

tion of saturation. This has led to an algorithm that with respect

to the state-of-the-art better reproduces the color appearance of

the HDR input images, while preserving the luminance compres-

sion applied by the tonemapping operator. We evaluated our al-

gorithm and assessed its performance compared to the state-of-

the-art with many challenging images as well as a psychophysical

experiment. As the computational cost is similar to existing tech-

niques, we believe that our algorithm is a good candidate for color

post-processing of tone reproduction operators as well as manu-

ally processed images.
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