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Abstract
Colour assessment of pigmented skin lesions are essential for the
diagnosis of malignant melanoma. However, visual interpretation
of colour is subjective and prone to error. Computer programs
can provide support to clinicians to overcome this subjectivity.
So far, methods for colour analysis of this nature have utilised
statistical classification models. This paper puts forward an al-
ternative framework: an effort to reproduce the experience of hu-
man observer. The proposed method introduces a perceptually
intuitive and semantically meaningful approach for colour and
colour-related feature detection. As a case study, the task of au-
tomatic detection and segmentation of blue-white veil feature in
dermoscopy images is examined. Our proposed method, as shown
in our experiments, outperforms the prior art for this task, while
it attempts to mimic the human perception of skin lesion colours.

1. Introduction
Colour assessment is important in the clinical diagnosis of

many conditions, especially in diagnosis of skin diseases. For in-
stance, presence of multiple colours with an irregular distribution
in a mole strongly suggests malignancy. Therefore, the use of
colour has been substantial in skin lesion classification.

In the computer analysis of medical images, in particular
skin images, colour plays an important role too. For instance,
colour can be used for lesion segmentation [1] or as one of the
image features [2] for lesion classification.

Sometimes a particular colour is associated with a particu-
lar medical condition. Hence, automatic identification (detection)
of the colour itself is of interest. As an example, blue-greyish or
blue-whitish areas in dermoscopy (skin-surface microscopy) im-
ages are known to be significant indicators of invasive melanoma.
Celebi et al. [3] developed a colour based method for automatic
detection and segmentation of blue-white areas.

In most computerised colour analysis programs (as well as in
[3]), colour models are based on statistical parameters and meth-
ods. These methods are used for computational convenience; they
do not model human perception and interpolation of colour.

Recently, an interesting study by Seidenari et al. [4] made
an effort to develop a computer program for colour assessment
in dermoscopic images by mimicking the human perception of
lesion colours. Their method identifies a colour by matching its
RGB values (in nearest neighbour fashion) to a small set of “most
representative colours”, interactively selected by user from a set
of skin lesion images. Although the idea of [4] is intriguing, the
study suffers from a number of flaws. The most serious of these
are lack of connection to colour science and failing to utilise state-
of-the-art techniques of computer vision. For example, using Eu-
clidean distance metric in RGB space to compute colour differ-
ences and conduct colour matching is, in essence, contradictory
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Figure 1. Melanoma images with Blue-white Veil

to the goal of mimicking human colour perception because RGB
is not a perceptually uniform colour space.

This paper puts forward a framework for colour detection
and assessment of a somewhat similar nature. Our method is in-
spired by the work of [4] yet different in that i)we make care-
ful consideration in utilising colour models that are more congru-
ent with human colour perception; ii)we systematically produce
a discrete set of (Munsell) colours best describing a colour fam-
ily to be detected (i.e. here, the colour of “blue-white veil” under
dermoscopy, a strong indicator of melanoma); iii) we incorporate
current colour analysis and computer vision techniques.

For the purpose of this publication, the proposed framework
is implemented to automatically detect and segment blue-white
veil areas in dermoscopy images. This is described next.

Blue-white veil detection for diagnosis of Melanoma
Melanoma, the most unforgiving skin cancer, is among the can-
cers with rising incidence and mortality rate [5]. Early detection
of melanoma is paramount to patients’ prognosis towards greater
survival. The clinical diagnosis of early melanoma is acknowl-
edged as challenging [6] and has provoked increased interest in
computer-aided diagnosis systems through automatic analysis of
dermoscopy images.

Dermoscopy is a non-invasive imaging technique, popularly
used for screening of pigmented skin lesions. It uses optical mag-
nification and cross-polarized lighting (or fluid immersion, to re-
move scatter of light) which allows better visualization of skin
morphological characteristics.

The clinical assessment of skin lesions under dermoscopy
consists of assessment of shape, size, colour, border and eleva-
tion [7, 8]. Common colours under dermoscopy are light brown,
dark brown, black, blue, blue-grey, red, yellow, and white [9].
There is more to these colours than meets the eye; for instance,
the colour blue (under dermoscopy) indicates melanin localized
within deeper parts of the skin [9].

Among dermoscopic features, blue-white veil is the sin-
gle most important finding in making a diagnosis of invasive
melanoma (with specificity of 97%) [10]. Fig. 1 shows der-
moscopy images of melanoma with a blue-white veil feature; the
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blue-white veil regions are structureless areas of confluent blue
pigment with a ground-glass haze (as if the image were out of
focus there) [11]. Blue-white veil is associated with “superficial
fibrosis with melanophages and/or malignant cells in the papillary
dermis” [12].

To our knowledge, the only study that reports a method, ex-
perimental procedure, and results specifically pertaining to detec-
tion of blue-white veil is the one by Celebi et al. Their approach
involves pixel classification using explicit thresholding, where the
threshold values are induced by a trained decision tree.

This paper puts forward an alternative method, by incorpo-
rating colour analysis and computer vision techniques to address
the task under study. The proposed method is an attempt to mimic
the human perception of lesion colours and outperforms the state-
of-the-art [3] as shown in our experiments. The proposed method
is described next.

2. Method
Let us look at the problem of blue-white veil detection from

a further level of abstraction. There are two questions of inter-
est to us: how a dermatologist identifies the presence of certain
colours under dermoscopy? And, how can we develop computer
programs to mimic this dazzling human ability?

Although it seems natural for human to associate names (la-
bels) with colours, the task of colour naming conceals complex
and unsolved problems in the field of computational colour sci-
ence. If we ignore the great deal of uncertainty in naming colours,
as well as the cultural and language dependencies, we can safely
say that, when it comes to colour naming, people are influenced
by the colours they saw previously.

Indeed, a dermatologist needs training to be able to identify
the blue-white veil feature. Thus, to mimic the colour assessment
performed by human observer, we propose to identify the colour
feature of interest, i.e. blue-white veil, by colour matching to a
discrete set of colours best describing that colour label.

To this aim, we first describe a method to identify and extract
the set of colours best describing blue-white veil data, followed by
a method to perform colour matching to automatically detect and
segment this feature.

Discretization of blue-white veil colour data
We used a set of 105 images selected from [11], consisting of
43 images containing sizeable blue-white veil areas with the re-
maining 62 free of this feature. This dataset has been labeled and
used by Celebi et al. For each image a number of small circular
regions that contain either veil or non-veil pixels were manually
determined and extracted as veil and non-veil data.

We analysed the veil data by mapping their colour values
to the Munsell colour system [13]. In colorimetry, the Mun-
sell colour system is one of the most fundamental and influential
colour-modellings. Albert Munsell, its creator, was an American
scientist and artist; although his work originally was devised more
by intuition than exact science, yet it offers both perceptual and
quantitative colour definitions. The perceptual definition (given
in the form of a book with printed colour patches) is appropriate
for the use of artists such as painters and designers, whereas the
quantitative definition provides measurement standards that are
appropriate for technical and scientific use.

Quantitatively, the Munsell system specifies a local colour

by giving its hue (H), value (V), and chroma (C), in the form
HV/C. The value is a number between 0 and 10. The chroma is a
positive number, whose bound depends on hue and value, as given
by the MacAdam limits. The hue specification consists of a letter
designator (B, BG, G, GY, Y, YR, R, RP, P, PB), and a number
designator which is greater than 0 and less than or equal to 10
[14].

Since there is no direct conversion from standard RGB to
Munsell colour quantities, we consider computing an approximate
transform from CIELAB specification to Munsell specification.

The CIELAB (a.k.a. L∗a∗b∗) model is another well known
colour system. The three coordinates are: L∗ which represents the
lightness of colour (luminosity layer), a∗ which indicates colour
differences along the red-green axis, and b∗ that indicates colour
differences along the blue-yellow axis. The space spanned by a∗
and b∗ represents the colour chromaticity. The sRGB values are
directly mapped to CIELAB coordinate system through a non-
linear transformation 1.

An alternative notation to L∗a∗b∗ is the L∗C∗
abhab expression

where C∗
ab =

√
a∗2 +b∗2 and hab = tan−1(b∗/a∗) [15]. This al-

ternative notation offers an advantage in that it is easier to relate it
to the earlier systems based on physical samples, like the Munsell
colour notation.

For colour conversion from CIELAB to Munsell, we follow
[16]. There, L∗ directly corresponds to Munsell value. The hue
angle hab corresponds to Munsell hue; ideally, the ten hue desig-
nators should be evenly spaced in terms of their hue angle, with no
dependency on chroma or value. Experiments [15] show that yel-
low occurs at hab = 90o, so 5Y Munsell hue is set to correspond to
90 degrees. The other nine hues are assumed to be evenly spaced
around the circle, in a counter clockwise direction. Finally, C∗

ab is
taken to be 5 times Munsell chroma. “This is a crude approxima-
tion but the best available so far” [17].

The above-mentioned conversion is approximate: if one
takes a Munsell sample, calculates its coordinates in CIELAB
(when illuminated by Illuminant C), and then converts it back to
the Munsell system by above-stated conversion routine, the re-
sulting Munsell specification would not agree exactly with the
Munsell specification of the original sample. “Nevertheless, the
agreement is good enough for most practical purposes” [16].

Note that we are interested to achieve the best generaliza-
tion in building the discrete set of blue-white veil data. For that
task, as a pre-processing step, each image is converted to its ‘su-
perpixel’ representation. Superpixels capture image redundancy
by grouping pixels into perceptually atomic regions. They also
preserve information over scales and sampling resolutions. There
are a handful of methods to create superpixel representation. In
our implementation, we used SLIC [18] which is a simple and ef-
ficient method based on a spatially localized version of k-means
clustering 2.

Algorithm 1 summarizes the approach taken here to convert

1A precise transformation requires knowledge of observer and light
source; since the images in our dataset are taken under uncontrolled con-
dition, we assumed standard observer and illumination (D65) for mapping
from sRGB to CIELAB.

2“SLIC (Simple Linear Iterative Clustering) performs local clustering
of pixels in the 5-D space defined by the L, a, b values of the CIELAB
color space and the x, y pixel coordinates to efficiently generate compact,
nearly uniform superpixels” [18].
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Figure 2. Colour Palette for blue-white veil detection.

blue-white veil data to a discrete set of colour Munsell patches.
Interestingly, the 146,353 pixels under analysis mapped to only
179 Munsell colour patches. Among these, 97% of the veil data
is described by only 116 colour patches. Figure 2 shows these
116 colours organized on a palette, and grouped according to their
Munsell hue.

Algorithm 1 – Discretization of blue-white veil colour data
1: for each image in database do
2: Convert from sRGB to CIELAB
3: Replace each pixel value with superpixel representation
4: for each pixel marked as veil do
5: Compute the approximate Munsell specification
6: end for
7: end for
8: Create frequency table of computed Munsell colour patches
9: Keep the most representative colours (in terms of higest fre-

quency) and organize them in a palette

We also analysed non-veil data by the same principle. The
254,739 pixels from non-veil areas mapped to 220 Munsell colour
patches, among which only 6 patches were overlapping with the
179 veil patches. These 6 contribute (altogether) to less than 1%
of veil data and are not considered among the 116 patches in the
blue-white veil colour palette.

The colour palette (Figure 2) serves as the human observer’s
(i.e. dermatologist’s) prior knowledge for colour assessment. It
can be used to extract blue-white veil regions from an input image
through colour matching. This is described next.

Blue-white veil detection via colour matching
We identify blue-white veil feature in each image through a
thresholded nearest neighbour matching. That is, each pixel of
a test image is matched to one colour patch of the colour palette
in a nearest neighbour fashion. If the (colour of) pixel is similar
(close) enough to the one of the colour patches, it is identified
as blue-white veil. Here, ‘close enough’ is evaluated by compar-
ing the distance (between any given colour vector and its nearest
match) against a threshold value 3.

To reduce the computational cost of above-mentioned pixel-
based colour matching, we can segment colours in any given im-
age and instead match the colour vector of the centroid of each
cluster (segment) to colours in the colour palette. By segmenta-
tion, we decompose an image into visually homogeneous regions
and effectively replace the pixel-based approach by a region-
based one, while preserving salient features of the overall image.
Note that in dermoscopy images there are a handful of distinct
colour regions (such as blue-white veil region) where the presence
or absence of a feature significantly affects the diagnosis while the
information within such a region is often less important and can
be neglected.

Colour image segmentation can be done in an automated and
unsupervised fashion (where the number and the shape of the im-
age clusters are unknown). In our implementation, we use EDI-
SON [19] software, a mean-shift based segmentation tool 4.

Colour matching in the fashion described above is sensi-
tive to colour representation employed and colour distance metric
used. We consider working in the CIELAB colour space. This
choice is motivated by two reasons: first, this colour space is an
approximately perceptually uniform 5 colour model. Thus the dif-
ference between two colours can be measured using e.g. the Eu-
clidean distance metric. Second, CIE colour spaces are device
independent, which make them suitable for colour matching and
colour comparison.

It is to be noted that the difference (or distance) between two
colours is a metric of interest in colour science. In this study we
used the CIEDE2000 colour difference formula as indicated in
[20] 6. “The CIEDE2000 formula provides an improved proce-
dure for the computation of colour differences from experimental
data” [20].

Algorithm 2 summarizes the proposed method for detection
and segmentation of blue-white veil areas in dermoscopy images.

3. Experiment
We tested our proposed method on a set of 223 images se-

lected from [11] and used by Celebi et al. The image set consists
of 173 images containing blue-white veil areas and a remaining
50 free of this feature.

3The threshold can be set experimentally using the training data. From
the training data we can also define the posterior probability of a pixel be-
ing veil given its colour in terms of the likelihood of observing its associ-
ated colour patch given the class label and the prior probability of classes.

4Mean shift (MS) is a statistically robust mode-seeking algorithm that
is based on clustering in both space and colour.

5That is, colour differences (in CIELAB spaces) agree more consis-
tently with human visual perception. Note that the common sRGB colour
space does not yield this property.

6 A Matlab implementation is available on the author’s
[20] website at http://www.ece.rochester.edu/
∼gsharma/ciede2000/dataNprograms/deltaE2000.m
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Algorithm 2 – Blue-white veil detection
1: Load a skin lesion image
2: Convert from sRGB to CIELAB
3: Segment using EDISON
4: for each segmented region do
5: Find the best match from colour palette
6: if The best match is within the threshold distance then
7: Classify region as veil
8: else
9: Classify region as non-veil

10: end if
11: end for

The results of [3] is taken as the baseline. A summary of this
baseline is given in algorithm 3.

Experimental results are presented in Table 1. We report sen-
sitivity and specificity. Sensitivity measures how good a test is at
detecting positives. It is defined as true positives/(true positives +
false negatives). Specificity shows how good a test is at avoiding
false alarms. It is defined as true negatives/(true negatives + false
positives). These measures of performance are of utmost impor-
tance for medical image analysis systems. Any computer program
to aid diagnosis is to be sensitive (as it would save more lives) and
specific (since it would reduce financial and emotional burden on
patients).

For any test, there is usually a trade-off between these perfor-
mance measures. For example, the baseline achieves high speci-
ficity at the cost of low sensitivity. We believe this can be ex-
plained by the limitation of decision trees used in [3]. Decision
trees are simple to use and easy to understand, yet (as can be seen)
their good detection rate usually arrives at the expense of high
false negatives. Our proposed method on the other hand improves
on sensitivity while preserves specificity. To ensure that this im-
provement did not arrive at the cost of introducing high false pos-
itives, we also include and compare the F-score of methods. The
latter is the harmonic mean of precision (true positives/(true pos-
itives + false positives)) and recall (sensitivity).

Method Sensitivity Specificity F-score
Celebi [3] 0.65 0.97 0.68
Proposed 0.71 0.97 0.70

Table 1. Proposed method vs. Celebi et al.

Accurate detection and segmentation of blue-white veil fea-
ture can be useful for computer analysis of skin lesion images.
However, in clinical assessments, presence or absence of this fea-
ture is associated with diagnosis. Accordingly, in a different ex-
periment we aimed to determine only the presence (or absence)
of veil feature in a set of 300 images taken from various sources.
The image set is divided into two subsets of 200 ‘easy’ and 100
‘challenging’ images. An image is considered challenging if the
blue-white veil area was too small, too pale, occluded, or had var-
iegated colour.

Our experiment produced accuracy of 87% and 67% on easy
and challenging sets respectively 7. Figure 3 illustrates the output
of proposed method on some of the images in each set. Note that

7In order to exclude very small areas which are without clinical rele-
vance, a minimum value (threshold) for areas of veil region can be con-
sidered. We set this area threshold to 0.5% of image area.

for this set of images, since the lesion border was not available
to us, we did not run the baseline method and only report our
detection results as presented.

Algorithm 3 –Blue-white veil detection by Celebi
Load a dermoscopy image of skin lesion.
Extract lesion border.
Dilate the border by 10% of its area.
Extract region outside the dilated border of size 20% of lesion
area.
for each pixel in extracted region do

if R > 90 and R > B and R > G then
Mark the pixel as healthy skin.

else
Ignore the pixel and continue.

end if
end for
Set R̄s as the mean of red channel values for pixels marked
healthy skin.
for each pixel in the image do

nB = B/R+G+B
rR = R/R̄s

if nB ≥ 0.3 and −194 ≤ rR <−51 then
Classify pixel as veil

else
Classify pixel as non-veil

end if
end for{ Note that above-mentioned requires extraction of le-
sion border. Thus, the complexity and computation cost of [3]
is influenced by the border extraction algorithm employed. In
their experiments [3], the lesion borders were obtained man-
ually “to separate the problem of feature extraction from the
problem of automated border detection”. Also, the above re-
quires a search for normal (healthy) skin colour in the back-
ground, outside the lesion border. Thus its performance is also
constrained subject to the accuracy of skin colour filter used. A
revised version of this method is given in [21] which requires
less computation and performs equally well.}

4. Conclusion
The importance of colour assessment in medical images has

been discussed. In the quest to computerise this process, most
studies focus on statistical methods and parameters for colour de-
scription. These descriptors are mainly chosen for computational
convenience; they do not model human perception and interpreta-
tion of colour.

Our proposed method on the other hand mimics the human
process of identifying lesion colours while providing statistical
outputs that can be ported to any computer-aided diagnosis sys-
tem. In addition to its strong performance, the proposed method
is intuitive and easy to understand, which makes it suitable for
non-engineers (viz. clinicians) to employ and apply.

Furthermore, the proposed method can easily be extended to
account for detecting other colour features in dermoscopy images.
In fact, it can be seen as a scaffolding for colour based detection
and assessment problems of similar nature.

The blue-white veil colour palette can be used for training
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purposes, as well as a reference tool (such as designers’ colour
chart) for dermoscopy trainees and neophytes. For that matter,
a colour palette of other common colours can be generated as
well. Note that the proposed method can automatically gener-
ate colour palettes given labelled training data. The advantage of
this is twofold since statistical data can be extracted from training
data and associated with colour patches on colour palettes. In fact,
one can use this method to extract a colour map of lesions with
common colours (under dermoscopy) and link it to statistical data
to e.g. associate a feature with a diagnosis.

Finally, this method can aid clinical and laboratory investi-
gations to e.g. confirm the high diagnostic relevance of presence
or absence of colour and colour related features.

It is important to note that our method is bound by the rep-
resentativeness of the training data. The method can benefit from
consensus colour labelling (naming) of training data by different
dermatologists.
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Figure 3. (a-m): Easy images; (n-r): challenging images – The green border indicates veil areas detected by proposed method.
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