
 

Color Reproduction and Beyond 

Roger D. Hersch, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

- “Is research in color reproduction not completely outdated? 

Since anyone can print perfectly looking color pictures, hasn’t 

everything been solved  ?”  

In reply to these questions, let us give an overview about the 

current state of the art in classical color reproduction and outline 

both solved and unsolved problems. We then describe actual and 

future challenges.  

The fundaments of color reproduction have been laid out at 

the end of the 19th and beginning of the 20th century. They rely on 

the decomposition of a scene imaged onto 3 separate “red”, 

“green” and “blue” color separation negatives and on the 

reproduction of that scene by the subtractive primaries “cyan”, 

“magenta” and “yellow”. The amounts of cyan, magenta and 

yellow inks are respectively controlled directly or indirectly by the 

intensity of the registered red, green and blue color negatives [1]. 

Today’s approach for computing the amounts of cyan, 

magenta and yellow inks from the red, green and blue intensity 

values of a displayable color image consists in characterizing both 

the input red, green and blue imaging device and the cyan, 

magenta, yellow and black output device in respect to a device-

independent color connection space such as CIELAB. An explicit 

mapping between the input color gamut and the printer’s output 

color gamut is established [2].  

Printer manufacturers embed into an ICC profile the 

correspondence between input colors expressed for example as 

CIELAB colors and output CMYK ink dot surface coverages. This 

mapping incorporates the mapping of the input gamut, generally a 

display gamut, into the printer gamut. Such a profile is only valid 

for a given printer using a given set of inks and a given substrate 

[3]. Changing the substrate (paper type) or the inks requires 

recreating a printer profile. This is often carried out by a robot 

measuring the spectral reflectance of more than thousand different 

uniformly printed color halftone samples. Printer profiles may be 

recreated more easily with a spectral prediction model that can be 

calibrated with only a few dozens of measured reflectance samples.  

Recent professional printers such as large format inkjet 

printers or offset printing machines incorporate a 

spectrophotometer. This spectrophotometer scans the printed page 

and measures reflectances. With the feed-back obtained in respect 

to the printed colors, control software may modify print parameters 

such as the amount of ink flow. These spectral measurement 

devices enable the online recalibration or possibly re-

characterization of the printer, but are rather expensive.  For low-

cost home printers, cheap solutions for online re-characterization 

may be achieved by combining model-based spectral prediction 

approaches and inexpensive multi-channel sensors.  

Since the first part of the 20th century, attempts have been 

made to establish models predicting the reflectance and therefore 

the color of uniformly printed samples incorporating given 

amounts of inks. The spectral Neugebauer prediction model 

predicts the reflectance R(λ) of a halftone as a weighted average of 

the reflectances Ri(λ) of the colorants (primaries) contributing to 

that halftone, the weights being proportional to the relative 

surfaces ai covered by these colorants. In order to account for the 

lateral propagation of light induced by the multiple reflections 

between the paper substrate and the print-air interface, the spectral 

Neugebauer model was modified by carrying out the weighted 

average in the reflectance space raised to the power of 1/n :  
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where n is a scalar value generally higher than 1, optimized on a 

limited number of representative halftone samples.  
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The resulting Yule-Nielsen modified spectral Neugebauer 

reflectance prediction model (YNSN) [4] is further improved by 

accounting for the spreading of each ink independently of the 

superposition condition (independent ink spreading: IIS) [5]. An 

improved superposition-dependent ink spreading model (SDIS) 

relies on the specific spreading of each ink superposed with each 

colorant formed by each of the other solid inks, each  

superposition of the other solid inks and paper white. For ink-jet 

printers, the SDIS-YNSN model provides prediction accuracies [6] 

that yield average color CIELAB ∆E94 differences between 

measurements and predictions in the range between 0.8 and 1.6. 

For 3 inks, that model requires at least 8+12=20 sample 

measurements for its calibration. A slightly higher precision 

accuracy is achieved with 8+36=44 calibration samples. For the 4 

CMYK inks, the model requires at least 16 + 20 = 36 samples for 

its calibration [7]. A slightly higher prediction accuracy is 

achieved with 16+60=76 calibration samples.  

The prediction accuracy can be further improved by cellular 

subdivision of the YNSN model [8]. For 3 inks, it requires the  

spectral measurement of 33 = 27 Neugebauer primaries. At the 

center of each of the 8 subcubes, one additional measurement is 

needed in order to simultaneously fit the effective surface 

coverages of the 3 inks. This additional measurement provides the 

three superposition independent ink spreading curves of the                                   

In the case of independently printed three cyan, magenta and 

yellow ink layers with respective surface coverages c, m and y, one 

obtains the 8 colorant surface coverages white aw, cyan ac, magenta 

am, yellow ay, red ar, green ag, blue ab, and chromatic black ak,  

according to the Demichel equations: 
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considered subcube. In total, for 3 inks, the resulting IIS-CYNSN 

model [9] requires 27+8=35 sample measurements and for 4 inks, 

it requires 34 + 16 = 97 measurements. For ink-jet printers, 

average prediction accuracy of the IIS-CYNSN model expressed as 

average color CIELAB ∆E94 difference is between 0.5 and 1.2.  

As an example, figure 1 shows the elements of the ink 

spreading enhanced Yule-Nielsen modified Spectral Neugebauer 

reflectance prediction model (SDIS-YNSN), followed by the part 

calculating CIELAB colors from reflection spectra.  

In forward mode, a calibrated spectral prediction model 

predicts the colors of samples printed with given surface coverages 

of the inks (Figure 1). The predictions are accurate for the printer, 

set of inks and paper that were used for the calibration of the 

model.  In backward mode, i.e. by a gradient descent procedure, 

one may obtain the surface coverages of the inks enabling printing 

a given color. In respect to the generation of ICC profiles, the 

model in forward prediction mode enables creating the relationship 

between surface coverages of the inks and the device-independent 

color (CIE-XYZ or CIELAB). In backward mode, the prediction 

model enables obtaining ink surface coverages as a function of a 

desired color. This may be useful in filling the table which maps 

device-independent colors to ink surface coverages.  

Prediction models are specially useful for dynamically 

adapting the reproduction workflow to the printer operating 

conditions. With a few spectral measurements or by obtaining the 

response from a few sensors, a printer can be completely re-

characterized and if needed an appropriate ICC profile can be 

regenerated. This is particularly useful in environments where 

operating parameters such as temperature or humidity may vary or 

if the inks and the paper come from different suppliers.  

When printing with a large choice of custom inks, e.g. 

Pantone inks, prediction models can be enhanced by additional 

constraints such as the minimization of metamerism [10], the 

maximization of color constancy [11], the minimization of the 

amount of ink used [12] or the avoidance of false boundaries due 

to custom ink halftoning [13]. In this context, the question arises if 

a single prediction model should incorporate all candidate custom 

inks. Such a model could be set up by extending the Demichel 

equations to all suitable ink superpositions and by measuring the 

corresponding primaries. Or is it preferable to subdivide the 

available set of inks into subsets of 3 to 4 inks, and associate to 

each subset of inks a separate prediction model?  

Generally, the second solution is preferred. With different 

subsets of inks capable to print a given color, we can select the one 

that is the most appropriate at a given position within a specific  

image according to either general considerations or to 

considerations which depend on the color image to be reproduced 

and on the current position within that image. This approach was 

successful in creating wide-gamut prints relying on daylight 

fluorescent inks [14] as well as in creating invisible daylight fluo 

watermarks revealable under blue light [15].  

Let us note that YNSN color prediction models have the 

limitation that no exact method exists to predict the reflectances of 

solid colorants (primaries) formed by superpositions of solid ink 

layers. For high prediction accuracy, all considered primaries need 

to be measured.  

The issues mentioned above are relevant for classical color 

reproduction, where inks are printed on a white diffusing 

“Lambertian” substrate. There are however new approaches for 

creating attractive prints on non Lambertian substrates. One of 

these approaches uses a substrate formed by a specularly reflecting 

layer of silver [16]. When printing with classical inks on top of 

such a specularly reflecting substrate, many new problems arise. 

The image creator needs to decide if the image is to be viewed in 

specular mode, i.e. at aspecular angle zero or at another aspecular 

angle. At the selected illumination and observation angle, there is a 

need to establish a relationship between classical ink surface 

coverages and perceived color. This is not trivial, since both the 

CIE-XYZ and the CIELAB colorimetric systems were established 

for diffuse emitting or reflecting surfaces. In addition, when 

converting from CIE-XYZ to CIELAB one needs to define a 

reference “white” stimulus on which the eye adapts. Is it the 

unprinted metallic surface ? A further issue concerns the 

colorimetric “error” introduced when a color image printed to be 

viewed under specular reflection is viewed under some aspecular 

angle. Is there a way to generate a color image that would look 

good both under specular reflection and under a significant range 

of aspecular angles ?  

Spectral prediction models are extremely useful when trying 

to solve problems raised in connection with specularly reflecting 

prints. The cellular ink-spreading enhanced Yule-Nielsen modified 

spectral Neugebauer model provides accurate spectral predictions 

under the same illumination and observation conditions for which 

it was calibrated. For the three cyan, magenta and yellow inks 

printed on a silver substrate, it reduces the number of samples that 

have to be measured from many hundreds to 35 samples at each 

selected illumination and observation geometry.  

Beyond color reproduction of images on flat media, there is 

today the possibility of printing images in 3D by combining both 

flat and relief image elements. Such 3D printers theoretically allow 

selecting different substrates on which the colorants are printed. 

Using non-planar structures offers many new opportunities as well 

as challenges for color image design and reproduction. 
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Figure 1. Ink-spreading enhanced Yule-Nielsen modified Spectral Neugebauer model (SDIS-YNSN) followed by CIELAB color calculation, with c,m,y and c’,m’,y’ 

expressing respectively the nominal and effective surface coverages of the inks and with aw, ac,,… ak  expressing the effective surface coverages of the colorants 

(Neugebauer primaries). 
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