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Abstract
A previous study proposed a method for simulation of detail

visibility of natural images (from different observation distances)
by using contrast sensitivity functions and wavelets (Pedersen
and Farup, Color and Imaging Conference 2012). In this paper
we propose an improved method using the non-subsampled con-
tourlet transform, which accounts for important aspects of the
human visual system such as orientation sensitivity. In addi-
tion we account for the effect of surround illumination. Objective
and subjective evaluations show that the proposed methodology is
promising, and that it introduces fewer artifacts than the previous
method.

Introduction
Pedersen and Farup [1] presented at the 20th Color

and Imaging Conference a method for simulating image
detail visibility of natural images, where perceptible in-
formation at a given distance is kept, while impercepti-
ble information is discarded. If the original and the sim-
ulated image are viewed from the simulated distance or
farther away, they should be indistinguishable. This is
because the information from the original, that is imper-
ceptible, has been removed through the simulation. Such
a method to simulate detail visibility has several applica-
tions; it can be used in the evaluation of image quality, im-
prove compression, gamut mapping, and halftoning. The
method is based on the relationship between contrast sensi-
tivity and spatial frequency (contrast sensitivity functions),
and an octave-wise spread over the spatial frequency range
matched by wavelet decompositions. The method showed
promising results; giving a good match to human observers
and improving the performance of an image quality metric.
The method had several advantageous properties, such as
multi-resolution from coarse to fine resolutions and the ba-
sis elements in the representation are localized in both spa-
tial and the frequency domains.

However, since it uses wavelets it suffers from artifacts,
such as blocking and ringing. These artifacts are unwanted,
and if they are suprathreshold they become visible for ob-
servers. Wavelets have a crude directional representation
(primarily vertical, horizontal, and diagonal). Although
they are good at representing point discontinuities, they
are not good at representing discontinuities along edges.
Therefore, the representation should contain basis elements
oriented in a variety of directions, preferably in more direc-
tions than those offered by wavelets. Additionally, wavelets
are isotropic, and they are therefore not able to to capture
smooth contours in images, which often occurs in natural

images. Hence, the representation should contain basis el-
ements using a variety of elongated shapes with different
aspect ratios, which can be accomplished with for exam-
ple curvelets [2] or contourlets [3]. Furthermore, the model
by Pedersen and Farup [1] does not incorporate a model
of the Contrast Sensitivity Function (CSF) that accounts for
the fact that we are less sensitive oblique angles than verti-
cal and horizontal angles [4, 5].

In this work we extend the method proposed by Peder-
sen and Farup [1] by increasing the directionality and bet-
ter capture smooth contours through the use of the Non-
Subsampled Contourlet Transform (NSCT) [6]. Addition-
ally, we incorporate a more advanced CSF model from
Barten [7]. All with the goal of improving the simulation
of image detail visibility of natural images.

This paper is organized as follows: first we intro-
duce relevant background, then we present the proposed
methodology. Further, evaluation of the proposed method
is presented. At last we conclude and propose future work.

Background
The method proposed by Pedersen and Farup [1] was

based on several different works [8–11]. The image to be
filtered was first converted into a suitable color space. For
this a linear RGB color space inspired by the YCbCr color
space was used, where the primaries were defined accord-
ing to the wavelengths of the monochromatic light sources
used to generate the gratings used in the experiments by
Mullen [12] to measure the chromatic CSFs. Further, the
filtering method was based on existing work on local band-
limited contrast for complex images [8] and wavelet based
contrast sensitivity filtering [9]. A wavelet decomposition
of the image was carried out to obtain octave width bands
of frequencies. The coefficients were reconstructed to full-
scale before CSFs are applied. The CSF filtered coefficients
were compared to the contrast low-pass band, if the filtered
coefficients were higher than the low-pass coefficients, the
information was kept, else it was removed. Additionally,
contrast masking was incorporated using an extended intra
channel masking method accounting for local activity [13].
For more information we refer the reader to Pedersen and
Farup [1].

The non-subsampled contourlet transform

The NSCT was proposed by da Cunha et al. [6], and
it was based on a non-subsampled pyramid structure and
non-subsampled directional filter banks. The design re-
sults in a flexible multi-scale, multi-direction, and shift in-
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variant image decomposition. The NSCT can be divided
into two shift-invariant parts: a non-subsampled pyra-
mid structure to achieve multi-scale properties and a non-
subsampled filter bank with directional filters. The first part
gave a sub-band decomposition similar to that of the Lapa-
cian pyramid, which was done through the usage of two-
channel non-subsampled 2-D filter banks. For the latter, a
directional filter was constructed by combining critically-
sampled two-channel fan filter banks and re-sampling oper-
ations. This results in a tree-structured filter bank that splits
the 2-D frequency plane into directional wedges. These two
elements were combined as seen in Figure 1.

The NSCT has shown to be effective for image quality
assessment [14], image fusion [15], face recognition [16], de-
noising [6, 17, 18], and enhancement [6, 19]. It is therefore
likely, together with its advantageous properties, that it will
be effective also for the simulation of image detail visibility.

Figure 1. Non-Subsampled Contourlet Transform (NSCT). On the left the non-

subsampled filter bank structure and on the right the idealized frequency partitioning

obtained by the non-subsampled filter bank. Figure reproduced from Lu et al. [14].

Proposed methodology
The input image is transformed into the Ybr color space

as proposed by Pedersen and Farup [1]. Then each channel
is decomposed using the NSCT. Unless stated otherwise we
decompose the image using three levels with 4, 8, and 16
orientations, where the pyramidal filter generated from a
1-D filter using a maximally flat mapping function with 4
vanishing moments, and the directional filter is a 2-D dia-
mond maxflat filter of order 7. These are the default filters
proposed by da Cunha et al. [6]. This gives us a low-pass fil-
tered version (LL) and high-pass filtered versions hψ in sev-
eral orientations ψ. The high-pass filtered coefficients are
filtered with CSFs. For the achromatic channel (Y) a lumi-
nance CSF is applied, and for the two chromatic channels (b
and r) chromatic CSFs are applied. Due to the division into
orientations using the non-subsampled contourlet, the CSF
needs to be adapted to the orientation. We apply the CSF
model from Barten [7] that incorporate orientation depen-
dence of the CSF and the effect of surround illumination.
The general formula for the luminance CSF is

CSFL (u) =
C exp

(

−0.0016u2 (1 + 100/L)0.08
)

√

(

1 + 144
X2

0
+ 0.64u2

)(

63
L0.83 + 1

1−exp−0.02u2

)

, (1)

where C is a constant adapted to CSF measurements. Barten
[7] reports values from 3700 to 5800 for C depending on the
measurements. Unless stated otherwise a value of 3700 has

been used. u is the spatial frequency in cycles per degree,
L is the luminance in cd/m2, and X2

0 is the angular object
area in square degrees. In order to account for the fact that
contrast sensitivity decreases for oblique gratings, a contin-
uous function of the orientation angle is added to the CSF
formula in Equation 1, following the recommendation by
Barten [7]:

CSFL (u) =

C exp
(
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where ϕ is the orientation angle in degrees.
Further, the visibility of an object, and thus the contrast

sensitivity, can be reduced if the object is surround by a dark
surround, and also in the opposite situation. This can be
included in the CSF formula with a simple multiplicative
correction factor, f , as proposed by Barten [7]:

f =exp
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, (3)

where L is the luminance of the object, Ls is the surround
luminance, and X2

0 is the object area in square degrees of
visual angle.

For the chromatic content, two CSFs are required, one
for the red-green channel and one for the blue-yellow chan-
nel. For these channels we apply the CSFs from Johnson
and Fairchild [20]:

CSFC = α1 exp(−β1uγ1 ) + α2 exp(−β2uγ2 ), (4)

where the parameters for the red-green and blue-yellow
channels are given by Table 1, and u is defined as cycles
per degree.

Table 1: Parameters for the chrominance CSFs.

Parameter red-green channel blue-yellow channel

α1 109.14130 7.032845

β1 -0.00038 -0.000004

γ1 3.42436 4.258205

α2 93.59711 40.690950

β2 -0.00367 -0.103909

γ2 2.16771 1.648658

The luminance CSF (CSFL) is applied to the luminance
channel (Y), and the chrominance CSFs (CSFC) are applied
to the chrominance channels (b and r) for each band and
orientation. It should be noted that the CSF functions are
not normalized and applied directly at the given scale.

Now, let l′j(x, y) denote the contrast filtered LL band

and hψj(x, y) denote the high pass bands bands (depend-
ing on the orientation ψ) at level j. At the lowest level, the
LL band is not filtered, thus l′N(x, y) = lN(x, y), where N de-
notes the lowest level. Further, let aψj(x, y) denote the CSF
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filtered version of hψj(x, y) as described above. Then, the
contrast filtered octave bands are defined as

h′ψj(x, y) =

{

hψj(x, y) if aψj(x, y) > l′j(x, y)

0 else
(5)

The filtered information in ψ orientations are then used to
reconstruct the image in order to obtain the low-pass fil-
tered version for the next level.

In addition to filter the image using the CSF, we also in-
corporate contrast masking as done by Pedersen and Farup
[1]. This is accomplished by applying the extended intra
channel masking model accounting for local activity as de-
scribed by Nadenau [13]:

aM
ψj(x, y) =

aψj(x, y)

Tj,ψ(x, y)
, (6)

where aM
ψj(x, y) is the masked contrast and

Tj,ψ(x, y) = max(1, c̃j,ψ(x, y)ǫ) · (1 + ωρ), (7)

where T is the threshold elevation, c̃j,ψ(x, y) is the wavelet
coefficients normalized by the CSF for a given level j
and orientation ψ at pixel location (x, y), ǫ is the slope-
parameter, and ωρ is the correction term for the influence
of an active or homogeneous neighborhood:

ωρ =
1

(kL)ϑ Nρ
∑
ρ

| ˜cj,ψ|
ϑ , (8)

where kL determines the dynamic range of ωρ, Nr speci-
fies the number of coefficients in the neighborhood ρ (here
an n-by-n neighborhood is used), and ϑ is the power. We
have followed the recommendation by Nadenau et al. [21]
regarding the parameters (Nρ = 84, kL = 3e − 06, and ǫ = 0,
with a 3×3 neighborhood. ϑ is a free parameter, our pre-
liminary testing has shown a value of 0.28 to produce good
results. Masking is performed within each color channel
and between orientations.

Evaluation of the proposed method
If the original and the simulated image are viewed

from the simulated distance or farther away, they should
be indistinguishable. This is because the information from
the original is imperceptible, and the same information has
been removed by the simulation. However, if the original
and the simulation are viewed from a distance closer than
the simulated distance, the difference in content between
the original and the simulation should be visible. Never-
theless, it is still important that information, such as arti-
facts, is not added to the simulated image. In the worst
case artifacts can result in the simulated image becoming
distinguishable from the original at the simulated distance
or farther away. Artifacts can also reduce the quality of the
simulated image when viewed at a distance closer than the
simulated distance. Therefore, it is important to avoid arti-
facts, being the first evaluation criterion.

Visual investigation

One of the drawbacks of the previous filtering method
using wavelets [1] was artifacts. We will then therefore
compare the new method to the old method, to visually in-
vestigate if artifacts like ringing has been reduced. A simple
test target with four color patches has been designed to in-
vestigate if the new method has less artifacts. The target has
been filtered with the new and the old method (Figure 2),
and we can clearly see that the proposed method has less
prominent ringing, while preserving the edges quite well.

(a) Proposed method. (b) Method from Pedersen and
Farup [1].

Figure 2. Filtered test target for the evaluation of artifacts (simulated 2 meter). The

image has been enlarged to show the artifacts. We can see that the proposed method

has fewer artifacts around the edges than the method from Pedersen and Farup [1].

Figure 3 shows an example from a filtered natural im-
age (simulated 2 meters). The proposed method smooths
inside regions and has a less noisy appearance compared
to the other method. It also has less artifacts around hard
edges.

Figure 3. On the left the proposed method and on the right the method from Peder-

sen and Farup [1]. Both have been simulated for a viewing distance of 2 meters.

Objective evaluation

The simulated images should convey the same infor-
mation as the original image, i.e. it should have the percep-
tual quality which captures the attention of the observer,
also commonly known as saliency. It is important that the
simulated images maintain saliency when the simulation
method is applied to different areas, such as to improve the
quality of gamut mapped or halftoned images.

In this objective evaluation we are using difference of
saliency to evaluate if important salient features have been
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removed or introduced to the images. Both are unwanted
and will reduce the quality if the images. A similar method
has been shown to produce good results for evaluation of
gamut mapping algorithms [22, 23]. The saliency of the
original non-filtered image (Figure 4) and the saliency of the
filtered image have been calculated using the graph-based
visual saliency model from Harel et al. [24]. This saliency
model has shown to correlate well with human perception
through eye tracking experiments [25]. The model has been
calculated using color, intensity, orientation, and contrast
channels. Contrast width is set to 0.05, motion and Gabor
angles are set to 0,45,90, and 135, otherwise default param-
eters have been used. Further, we calculate the absolute
difference between the saliency of the original image and
the saliency of the simulated image. Figure 5 shows the
saliency difference for the proposed method (Figure 5(a))
and the previous method [1] (Figure 5(b)). We can see that
the proposed method has a lower difference of saliency, in-
dicating that the proposed method maintains saliency bet-
ter than the old method. Looking at the mean saliency dif-
ference, the proposed method has about 30% less difference
for the given test image, indicating a better saliency match
with the original.

Figure 4. Original image used for evaluation of difference of saliency.

 

 

(a) Proposed method.

 

 

(b) Method from Pedersen and
Farup [1].

Figure 5. Difference of saliency between the original image and filtered image

(simulated 4 meters). Both are shown the same scale, where black is no loss of

saliency and white is maximum loss of saliency. We can clearly see that the proposed

method has saliency closer to the original than the old method [1].

Subjective experiment

The proposed method should correspond with visual
observations. Therefore, an experiment was conducted,
where the original image and the filtered image were pre-
sented to observers from a certain distance. If the method is
valid, the filtered image and the original should be indistin-
guishable from a distance equal to or farther than the dis-

tance assumed in the filtered image [26]. The images should
be progressively easier to distinguish when the distance be-
comes shorter than the simulated distance. We will com-
pare the proposed method in this paper to the previously
proposed method [1] and the adaptive bilateral filter from
Wang and Hardeberg [27, 28]. The latter method avoids un-
desirable loss of edge information as introduced by a stan-
dard CSF-based filtering.

Experimental setup
A total of 14 observers participated in the experiment.

All passed a visual acuity test. The observers were shown
two images at the time, one original and one filtered im-
age. Their task was to indicate which of the two images
that appeared blurred. The images were shown on a Dell
2407WFPb monitor, calibrated to sRGB. The monitor lumi-
nance was set to 80 cd/m2, according to the sRGB specifi-
cation. The surround illumination (D50) was set to approx-
imately 30 lux. Three different scenes were used (Figure 6),
having red-green, blue-yellow, and achromatic areas. For
each of the images two distances were simulated, four and
two meters, as in Pedersen and Farup [1].

(a) Image 1: Rock (b) Image 2: Bird (c) Image 3: Cam

Figure 6. Test images used in the evaluation of the proposed method.

The observers started to view the images at a distance
larger than the simulated distance, where each image at
each simulation distance was presented two times at each
viewing distance. The observers indicated which of the two
images were blurred. Then the observers moved closer to
the monitor, repeating the process. If the observers could
not discriminate between the images, they were allowed to
guess or skip to the next image (skipping counting as not
being able to discriminate the images).

Data analysis
From each distance the percentage of correct identifi-

cations of the simulated image was calculated. The dis-
tance at which the subjects obtained a 75% identification
rate was compared with the simulated distance, as done by
Peli [26] and Pedersen and Farup [1]. The measured and
simulated distance should be equal if the proposed method
corresponds with perception. 95% confidence intervals for
the identificate rates have been calculated as Wilson score
interval with continuity correction [29].

Visual Experiment Results
Figures 7 and 8 show the results for the three methods

(ABF, Pedersen and Farup [1], and the proposed method)
when simulating 4 and 2 meters, respectively. For the 4 me-
ter simulation the proposed method shows 65% correct dis-
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crimination at 4 meters and 77% at 3.5 meters, indicating
that slightly more information could have been removed
from the images. However, in a setting where the method
is used for optimization of quality (for example image com-
pression) it is preferable that the method filters less rather
more information in order to avoid visible artifacts. Ad-
ditionally, the proposed method shows a favorable linear
behavior with a steeper slope compared to the old method
[1], while ABF discriminates too much.
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Figure 7. Comparison for the three methods simulating a distance of 4 meters.

Discrimination rates are plotted with 95% confidence intervals.

For the 2 meter simulation the proposed method has
76% discrimination at 2 meters, corresponding very well
with perception and being more precise than the old
method [1]. For the ABF observers fully discriminate for
all distances, indicating that ABF is not correlated with the
perception of image details. For the proposed method we
do not see the same linear behavior as for the 4 meter sim-
ulation (Figure 7), it was expected to have a steeper slope
between 2 and 1.5 meters. However, the proposed matches
the results from the observers well.
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Figure 8. Comparison for the three methods when simulating a distance of 2 meters.

Discrimination rates are plotted with 95% confidence intervals.

We have also investigated the results for the individual
images when simulating 4 meters (Figure 9) and 2 meters
(Figure 10). The proposed method shows similar behavior

for the different images when simulating 4 meters (Figure
9), indicating that the method is producing stable results
independent of image content, which is an improvement
over the old method. However, there are some differences
between the test images; the Rock image (Figure 6(a)) has
76% discrimination at 3.5 meters, corresponding well with
observers, while the Cam image (Figure 6(c)) has the low-
est discrimination with 63%. For 2 meters (Figure 10)) we
can still see a similar behavior between the images, except
for the Bird image (Figure 6(b)) where the discrimination is
reduced at 1.5 meters. This is also the main reason why the
slope between 2 and 1.5 meters for all images is not as steep
as for 4 meters. Overall, the proposed method is more sta-
ble and image independent than the old method [1], where
larger individual differences are found between images.

0%

25%

50%

75%

100%

4,5 4 3,5

C
o

rr
e

ct
 d

is
cr

im
in

a
�

o
n

Distance

4 meter simula�on proposed method

Cam Bird Rock All

Figure 9. Results for invidual images and all images when simulating a distance of

4 meters. Discrimination rates are plotted with 95% confidence intervals.
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Figure 10. Results for invidual images and all images when simulating a distance

of 2 meters. Discrimination rates are plotted with 95% confidence intervals.

Conclusion
We have proposed an improved method for simula-

tion of image detail visibility based on the work by Ped-
ersen and Farup [1]. It has been extended through the use
of the non-subsampled contourlet transform, that accounts
for important aspects of the human visual system such as
orientation sensitivity. Additionally, an advanced contrast
sensitivity function has been used to account for the effect
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of surround illumination. The experimental results from
the improved method is very promising, and the simulated
images has fewer artifacts than the method from Pedersen
and Farup [1].
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