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Abstract 
The RGBZ sensor is a novel imaging sensor that captures 

both color and depth images simultaneously in a single chip, with 

a specially designed color-filter-array (CFA), in which some of the 

RGB color pixels are replaced by “Z” pixels that capture depth 

information but no color information. As a result, RGB color 

images produced by this pixel array appear degraded, with 

missing RGB values or “holes” at locations occupied by the Z 

pixels. To fill in these “holes”, and thus restore resolution and 

appearance of color images, we propose a Patch-Clone method 

that exploits redundant texture information in the scene. Derived 

from the non-local approaches, our method consists of two steps: 

1) a matching step to identify the candidate patch that contains the 

most useful information to reconstruct the color pixels missing at a 

particular hole; 2) a cloning step to copy the content from the 

candidate to fill in the hole. When higher order pixel content is 

copied, pixel continuity between the restored and original pixels 

can be enforced. The result of the proposed method is full 

resolution Bayer images, to which existing common demosaic 

algorithms can be applied. Tests show that the proposed method 

provides better reconstruction result in term of distortion error as 

well as visual appearance. 

1. Introduction 
A number of techniques to restore damaged images exist in 

the image processing literature. Image inpaint (also known as 

image completion or disocclusion) is an active research area to 

restore damaged images for plausible visual appearance. One main 

category of image inpaint approaches is geometry oriented that 

interpolates missing information by solving partial differential 

equation (PDE). The other main category is texture oriented, 

relying on the existence of similar structures in a given image. 

Both of these two categories have been reviewed in depth as 

variational formulations of non-local approach by Arias et al [1]. 

Another scenario that missing pixels need to be filled-in is video 

de-interlacing, where all odd or even rows are missing in a video 

frame. Recently, video de-interlacing methods that use edge 

information for video frame reconstruction have been proposed in 

[2-5]. The basic idea is to identify the direction of the highest 

correlation for directional interpolation. Compared to linear 

interpolation approaches, Edge-based Linear Averaging (ELA) [2] 

may reconstruct sharply oblique lines, avoiding many of the jagged 

edges produced by line doubling or line averaging. Another related 

problem is called error concealment in video transmission, where 

some data packets carrying image information in different 

frequency domain are lost during transmission.  Commonly, lost 

information in different sub-band coded images is reconstructed 

separately via interpolating information of neighboring pixels [6-

8]. 

In this paper, our work focuses on reconstructing visually 

plausible color images based on an experimental RGBZ sensor 

manufactured by Samsung Electronics Corporation [9]. The RGBZ 

sensor captures color and depth images simultaneously, with a 

specially designed color filter array (CFA) derived from the 

standard Bayer CFA where some RGB pixels are replaced by “Z” 

pixels that capture only the depth information. Because the Z 

pixels capture no visible color information, they appear as “holes” 

in an RGBZ image. An instance of the RGBZ sensor layout is 

shown in Figure 1, where a hole occupies an area of 4x2 color 

pixels, and the holes are distributed 6 pixels and 4 pixels apart in 

the vertical and horizontal directions, respectively. Due to the 

unique design of RGBZ color pattern, applying commonly used 

demosaicing algorithms for the standard Bayer CFA will produce 

black “holes” in the full color image, unless a substitute for the lost 

pixel information can be provided.  To this end, we propose the 

Patch Clone method to fill-in the missing pixels in an RGBZ 

image to reconstruct a full Bayer CFA, thereby existing standard 

demosaic algorithms can be applied. Our approach is similar to the 

Non-local based approaches described in [1], but is more efficient 

for real time application. To achieve that, instead of estimating 

each individual missing pixel in a special order, we fill in the entire 

patch (ie. hole) at once. Moreover, unlike any of the techniques 

above, the result of our reconstruction is a full Bayer image, given 

an input RGBZ raw image where adjacent pixels contain signals 

from different color bands (or black at Z pixels).    

 

  
(a) (b) 

Figure 1. (a) CFA of the new type of RGBZ sensor. The red, green and blue 

squares represent the locations for red, green and blue color filters; the white 

squares represent the locations of Z sensors. (b) A real RGBZ image taken 

with an RGBZ sensor [9], where Z-pixels appear as black “holes”(original 

image is cropped for display) 

In section 2, we detail our method that consists in two steps: 

the matching step and the cloning step. In the matching step, we 

search for the texture that best matches the “template” defined as 

all boundary pixels surrounding a hole. In the second step, the 

missing pixels in the hole are filled in by cloning those from the 

best match in the first step.  As our method intends to produce 

“perceptually plausible” images, in Section 3 we test our method 

based on widely used evaluation criteria, namely, the Mean Square 

Error (MSE), the Peak Signal-to-Noise Ratio (PSNR), and 
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Structural Similarity (SSIM) [10], for measuring the fidelity 

between the reconstructed image and the reference image. Also, 

the performances of the proposed reconstruction are compared to 

bilinear interpolation and ELA-based approaches based on 12 

images of the benchmark Kodak database [11]. In the end, the 

conclusion of our paper is provided in Section 4. 

2. Method Description 

2.1. Template Matching 
In the first step of the patch clone method, we search for the 

texture within the image that best matches the template. In our 

case, the template is the patch composed of all boundary pixels 

around the target hole to be filled. A hole is defined as a group of 

pixels that are 4-connected (in terms of connectivity). A boundary 

pixel around a hole is a color (red, green or blue) pixel that is 8-

connected to any pixel belonging to the hole. 

 

   
(a) (b) (c) 

Figure  2. (a) The matching mechanism. The boundary pixels of the template 

and candidate patches are indicated by yellow outlines. (b) Hole and boundary 

pixels of the template at location x, labeled by local coordinate. The yellow 

highlight indicates boundary pixels. (c) Pixels of the best matching candidate 

at location y, labeled by local coordinate. The yellow highlight indicates 

boundary pixels. 

 Hence, for every hole to be filled-in, we first identify the 

template patch that consists of boundary pixels surrounding the 

hole in the data image. Then we search for a candidate patch that 

best matches the template. A candidate is a patch that is of the 

same size as the template and retains the same color filter 

arrangement. We match the template by sliding it within an MxN 

neighborhood in a way that the underlying candidate patch has the 

same color order as the template. The similarity of the template 

and the candidate is computed based on the boundary pixels only, 

excluding any pixel belonging to a hole. This matching mechanism 

is illustrated in Figure 2(a). 

We can formulate our model in a more general mathematical 

form. Given Ο denote the set of all locations of pixels belonging to 

the holes in an image, and let x denote a set of pixel locations of a 

single hole. Clearly, x is a subset of O, i.e. x ⊂ Ο. Let h(x) be the 
set of pixel values at location x, and b(x) the set of pixel values on 

the boundary of the hole, provided b(x)∩h(O)=∅. Therefore, the 
matching step can be derived from the general framework of the 

classic non-local approach, that is, 
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Here “+” is the shift operator for offset s, which defines the size of 

the neighborhood to search for around x. The condition (x+s) ⊄ Ο 
explicitly excludes the case that x+s is in a hole, e.g. when s = 0.  

The weight function w measures the similarity between two 

vectors. In the classic non-local framework, Gaussian weights are 

commonly used, 
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where ||·|| is the L2-normal of two vectors and σ defines the shape 

of Gaussian function. In the proposed method, we set σ  → 0, then 
w becomes an impulse function, ie.  
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The definition of the weight function w in Equation 3 allows 

us to find the best matching candidate, at location y. Optionally, 

the weight w can be luminance-invariant when the boundary pixels 

are normalized with respect to the luminance, that is, ∑=
iii

bbb
~

, 

where bi is a pixel value of the boundary and bi∈b(x). Hence, w 

can then be expressed as 
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The luminance-invariant weight function allows us to 

compute the difference between two patches when they differ 

because of texture rather than luminance. 

2.2. Cloning 
Once the best matching candidate is identified, its content can 

be used to fill in the hole surrounded by the template.  The 

combination of matching and cloning can be expressed as the non-

local framework as in Equation (1)  and (3). There are three ways 

to clone the content from the best matching candidate: by pixel 

values (0th-order), by the pixel gradient (1st-order), and by 

Laplacian (2nd-order).  

 

2.2.1 Copy by Value (0th-Order) 

In this case, the non-boundary pixel values of the best 

matching candidate are directly copied to hole of the template (the 

exact Equation (1) is used). Suppose the best matching candidate is 

found at location y, then we have 
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That is, ui,j = vi,j, for i = 1, 2 and j = 1, 2, 3, 4, where i and j are in 

local coordinate of a  patch as illustrated in Figure 2 (b) and (c). 

 

2.2.2 Copy by Gradient (1st-Order) 

In this case, gradient of the non-boundary pixel values of the 

best matching candidate is cloned to the hole of the template. 

According to Equation (1), we have 
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The gradient, denoted by ∇, is defined as the change of pixel 
values in vertical and horizontal directions. In general  
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Here ∆x and ∆y are both 1. Given ∇ui,j = ∇vi,j, and vi,j are known, 

the hole pixels, ui,j, can be therefore calculated. However, the 

pixels adjacent to a non-boundary pixel are not always unknown in 

the vertical or horizontal direction. For example, consider the 

following two cases: 1) in Figure 2(b), at pixel u11, pixels u12 and 

u21 are unknown; 2) in Figure 2(c), at pixel v11, pixel v01 is 

unknown if v01∈h(O).  Therefore, we need to re-define the 

gradient and compute the hole pixel in a case-by-case manner to 

ensure all involved pixels are available. Let us first define a 

function t that checks whether a pixel belongs to a hole, that is, 
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Then according to Equation (7)-(9), the values u11, u21, u14, and u24 

can be calculated as 

 

11100110101001010111
)/())()(( vttvutvutu ++−+−=  

 

21203120202031313121
)/())()(( vttvutvutu ++−+−= , 

 

14150415151504040414
)/())()(( vttvutvutu ++−+−= , 

 

24253425252534343424
)/())()(( vttvutvutu ++−+−= , 

 

(10) 

(11) 

(12) 

(13) 

The calculation of u12, u22, u13 and u23 is more complicated, 
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The intuition is that we first try to use boundary pixels that are 

within 4-connected neighborhood to compute the gradient by 

Equation 8. If no such neighbor exists, we use 8-connected  

 
Figure 3. Thumbnails of the 12 images from Kodak database [11] 

 

neighbors. Otherwise, we use pixels that are in horizontal and 

vertical directions in a 5x5 neighborhood. 

 

2.2.3.  Copy by Laplacian (2nd order gradient) 

In this case, Laplacian of the non-boundary pixel values of the 

best matching candidate is cloned to the hole of the template. 

According to Equation (1), we have 
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Here ∇2 is the discrete 2D Laplacian operator defined as 
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Combining Equation (18) – (20), we get 
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Therefore, given Equation (21) and vi,j available, we can estimate 

all u’s in the hole at once by solving the following linear system of 

equations, 
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Similar to the 1st-order case, when not all pixels in the best 

matching candidate are known, the Laplacian cannot be computed 

by Equation (20). Thus we have to modify Equation (21)  to 

compute the Laplacian function by using only available pixels, that 

is 
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defined in the Section 2.2.2 and T is the count of no-hole pixels 
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within 4-connected neighborhood. Accordingly, the linear system 

in Equation (22) is modified to  
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Again, the hole pixels surrounded by the template can be 

calculated by solving Equation 24. 

In summary, the 0th-order cloning copies the pixel values to 

the hole directly, with no guarantee of the pixel value continuity 

between the estimated pixels hole and the pixels of template. As a 

result, sharp intensity change from hole to boundary pixels can 

cause artifacts such as white or dark spots. These artifacts may be 

propagated to the neighboring pixels during demosaicing [12].  On 

the other hand, the 1st-order cloning enforces the continuity 

between estimated hole pixels and the template pixels, but not the 

continuity among the pixels of the hole. The 2nd-order cloning, 

based on discrete Poisson equations, enforces continuity between 

every two adjacent pixels of the patch (including both hole and 

boundary pixels), and therefore minimizes the potential artifacts. 

For generality, the proposed approach does not assume the 

shape of the holes, or their distribution in the image, or the image 

color pattern of the image. Just for our RGBZ sensor, a patch is a 

rectangle that occupies a 4x6 area and the shift s should be a 

multiple of 2 horizontally/vertically in order to ensure the same 

color order of the template and its match during the matching step. 

3. Test Result 
In this section we evaluate the image reconstruction quality of 

our method based on a widely used benchmark consists of 12 

images of the Kodak database [11] and one Siemens star chart 

image. The thumbnails of Kodak images are provided in Figure 3. 

In the first test, we simulate RGBZ images by sampling the full 

color Kodak images according to the CFA shown in Figure 1. Then 

we process the simulated RGBZ images by the simple bilinear 

interpolation approach, the Edge-based Linear Averaging  (ELA) 

approach [2], and the three variance of our Patch-Clone approach 

(with illuminant invariant). During the matching step, our search is 

within a 20x20 neighborhood. Because the shift s = 2, the template 

is compared to less than 100 local candidates. Since the resultant 

images are full Bayer images, the reconstruction error is first 

measured for Bayer images only. to perform an error evaluation 

corresponding to human perception of final restored images in full 

color, we need to apply a demosaic algorithm. Although the color 

image reconstruction error will also depend on the choice of 

demosaic algorithm, the focus of this paper is to restore missing Z 

pixels, and hence evaluation of the effects of using different 

demosaic algorithms is beyond the scope of this paper. Therefore, 

we choose a common demosaic algorithm by Malvar et al [12], 

which is implemented in Matlab as a built-in function.  In the 

second test, we reconstruct an RGBZ star chart image by filling in 

the Z pixels based on the proposed approaches. The reconstructed 

full color image is compared to those by using bilinear 

interpolation and Edge-based Linear Averaging approach [2]. 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 4. Image restoration comparison ( original image is cropped for 

display). (a) reference full color image (image index 3 of the Kodak data set 

[11]) (b) reconstructed by bilinear interpolation (c) reconstructed by Edge-

based Linear Averaging (d) 0th order Patch Clone with M=N=20; (e) 1st order 

Patch Clone with M=N=20; (f) 2nd order Patch Clone with M=N=20. All 

images are demosaiced by Malvar et al [12]. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 5. Image restoration comparison (original image is cropped for display) 

(a) reference full color image (image index 1 of the Kodak data set [11]) (b) 

reconstructed by bilinear interpolation (c) reconstructed by Edge-based Linear 

Averaging (d) 0th order Patch Clone with M=N=20; (e) 1st order Patch Clone 

with M=N=20; (f) 2nd order Patch Clone with M=N=20. All images are 

demosaiced by Malvar et al [12]. 

In the following, we provide both visual and numerical result 

of our methods. First of all, visual comparisons of the result are 

demonstrated in Figure 4-6. In Figure 4 and Figure 5, two images 

from the Kodak database are selected for visual comparison and 

the original distortion-free images are provided in Figure 4(a) and 

Figure 5(a) as references. The reconstructed image by bilinear 

interpolation and ELA are shown in (b)-(c) of Figure 4-6, where 

artifacts in the restoration artifacts are quite strong especially in the 

high frequency edge regions (shown as high contrast black/white 

stripes in Figure 4 and Figure 6). This is mainly because of 

neglecting or misidentifying the edges around the holes, which 

leads to wrong interpolation of the missing pixels. On the other 

hand, all variants of our Patch-Clone method generate visually 

plausible images, relying on the fact that similar texture structures 

usually present in nearby neighborhood Also, visual differences 
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between the images produced by the three variants are quite subtle. 

For instance, one may find it very hard to tell the difference in the 

reconstructions in (d)-(f) of Figure 4 and 6. Therefore, a special 

case is provided in Figure 5 to illustrate the difference of our 

proposed methods with different orders.  Here inside the pupil area 

of parrot, the 2nd order cloning (Figure 5(f)) is able to restore the 

image to the distortion-free reference (Figure 5(a)) better than all 

the other tested methods, by enforcing local continuity. 

 

Table 1 demonstrates that Patch-Clone based methods 

outperform the bilinear interpolation and ELA in all four error 

measures. Interestingly, the 0th order Patch Clone method has the 

lowest complexity yet the performance is slightly better than the 1st 

order method. On the other hand,  the 2nd order Patch Clone shows 

evidently better image reconstruction quality than the other two. 

Please note that the MSE, PSNR and SSIM are only objective 

qualitative measures for image distortion, rather than a perceptual 

measurement by human experiments. 

Table 1. Comparison of image restoration methods based on 

the Kodak database [11]. The quality of the image is evaluated 

based on MSE (of Bayer and full color images in CIE L*a*b* 

color space), PSNR, and SSIM. 

Method 

Bayer 

Recon. 

Eval. 

Color Image Reconstruction 

Evaluation 

MSE 

(x100) 
PSNR 

MSE 

(in L*a*b*) 
SSIM 

Bilinear Interpolation 5.821 33.00 4.199 0.9731 

Edge-based Linear Avg 6.223 32.99 4.564 0.9734 

Patch Clone (0
th
 order) 4.397 34.29 2.898 0.9743 

Patch Clone (1
st
 order) 4.436 34.25 2.987 0.9740 

Patch Clone (2
nd
 order) 4.082 34.59 2.669 0.9752 

 

4. Conclusion 
Typical digital image data are characterized by a great deal of 

redundancy that can be exploited to reconstruct incomplete or 

damaged images. Based on non-local similarity, the proposed 

method restores the missing pixels in RGBZ images. The result is 

full Bayer images retaining the original image resolution. Our 

approach searches for the best match of the template composed of 

pixels around a hole resulting from replacement of some color 

pixels by a typically larger Z pixel. Once the best match is 

identified in the local neighborhood, the missing information is 

cloned from the best match, assuming the similar structure is 

within the neighborhood. Unlike the interpolation based 

approaches that may produce artifacts (such as blurring edges), 

which reduces the image resolution due to erroneous detection in a 

non-dominant directional edge regions, our method takes a 

different approach than local interpolation. The 0th order Patch 

Clone method reconstructs the image efficiently. Moreover, the 1st 

and 2nd order cloning reduces artifacts by enforcing local pixel 

continuity. Although the Patch Clone method is proposed for 

images from RGBZ sensors, the scheme can be easily modified to 

repair other damaged or incomplete images or videos. 
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