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Abstract
We investigate the influence of scene illuminant on

perceived image quality. Given two multispectral images,
an original and a reproduction (e.g. compressed, gamut
mapped,..), we seek redundancies of perceived difference
through changes of illuminant, and with regard to 5 so-
called image difference features (IDF). In order to do this,
we employ an information-theoretic perspective to measure
variations of entropies in each IDF, w.r.t. various scene
illuminants, and in the case of two particular kinds of dis-
tortions: spectral gamut mapping and a spectral reconstruc-
tion from a six-channel camera model. Our results indicate
that changing the scene illuminant has a lesser influence on
achromatic image difference features.

Introduction
Most recent studies on Image Quality Assessment

(IQA) rely on greyscale [1, 2] or chromatic information
[3] to rate the difference between two images. The intent
is to correlate as much as possible with human’s judgment
under specific viewing conditions. Yet, with the advent of
spectral technologies, image appearance models and multi-
channel printing, there is a growing need for a higher di-
mensional IQA. Spectral acquisition, processing and repro-
duction methods (e.g. spectral gamut mapping [4, 5], spec-
tral separation [6], compression [7], dimensionality reduc-
tion [8, 9]), require a new range of measures for Spectral
Image Quality Assessment (SIQA).

Although criteria such as classification or target de-
tection accuracy are widely used for spectral quality in
remote sensing applications, very little work has actually
been done to evaluate spectral quality in terms of percep-
tion. In [10], [11] and [12], various spectral-based distances
and divergence measures were studied for hyper- and multi-
spectral image quality, with attempts to relate these quan-
tities to perceptual meanings. Although they might cor-
relate with human judgment in some cases, measures that
operate directly in spectral space such as the popular Root-
Mean Square Error or the Goodness-of-Fit Coefficient, are
usually unable to properly do so. A reasonable explanation
to this is that the very notion of color (at least in terms
of perception) exists only when Viewing Conditions (VC)
are specified. Without considering at least a scene illumi-
nant and an observer model, no assumptions can be made
on how reflectance spectra are interpreted by the human
visual system. An alternative strategy is to pool the scores
from a traditional image difference measures like CIE2000
over a variety of VC [13], but to which extent? How much,

and which aspects of the perceptual difference between two
images remain unchanged from one set of VC to another
(e.g. from daylight to incandescent light)?

In this study, we investigate such questions, in order
to better understand the key challenges in SIQA. We pro-
pose to use a set of 5 image-difference features introduced
by Lissner et al. [3], and to observe their behavior when
the scene illuminant changes. In order to do this, we em-
ploy an information-theoretic perspective [2, 14] to mea-
sure variations of entropies in each feature, w.r.t. various
scene illuminants, and in the case of two particular kinds
of distortions: spectral gamut mapping and spectral recon-
struction from a six-channel camera model. Note that the
most influential VC feature is certainly the spectral power
distribution of the scene illuminant. Therefore, this study
focuses solely on changes of illuminant, while the remaining
VC (e.g. standard observer) are assumed to be constant.

Image difference features
In order to better understand how image differences

are changed with the scene illuminant, we rely on the
Image-Difference Features (IDF) used for the Color Image-
Difference (CID) measure [3]. In the CID framework, the
two images to compare are first normalized with an image-
appearance model, including a CAT02 chromatic adapta-
tion (as used by CIECAM02). This is to take into account
“the human visual system’s capability to adjust to widely
varying colors of illumination in order to approximately
preserve the appearance of object colors” [16]. The images
are then converted into the nearly perceptually uniform
LAB2000HL color space [17]. IDF maps are then computed
by means of terms adapted from the SSIM index [1] within
sliding windows (see formulas in Appendix). Five maps
are therefore obtained: Lightness-Difference map (LL),
Lightness-Contrast map (CL), Lightness-Structure map
(SL), Chroma-Difference map (LC) and Hue-Difference
map (LH). Figure 1 illustrates the workflow from spec-
tral space to feature extraction. We refer to the original
paper [3] and the source code provided by Lissner et al.
[18] for further explanations about the measure.

Note that the CID measure compares tri-chromatic
images, therefore each IDF map is intrinsically linked
to certain viewing conditions. The conversion from re-
flectance data to CIEXYZ tristimuli, was made w.r.t. a
CIE 2◦ standard observer, and a variety of illuminants. In
a previous, recent work [15], we observed that CID scores
computed for a few illuminants are able to predict image
difference under a large variety. In this study, we aim to
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Figure 1. Part of the CID workflow, from spectral space to feature extraction. The figure is partially extracted from [15].

quantify and better understand the variability of each IDF.

Redundancies
Given the IDF maps under a variety of illuminants, we

wish to evaluate their respective content in terms of infor-
mation. Measures based on Shannon’s entropy [19] provide
an efficient probabilistic framework to do so. Moreover,
when applied to data with perceptual attributes, they en-
sure that the abstract notion of information relates to a
perceptual quantity. The entropy of an IDF map is a mea-
sure of its uncertainty. It is usually measured in bits, that
is the number of bits required to code the full map. The
more bits are required to code all the coefficients of the
map, the more information it contains. We denote H(X)
the entropy of the discrete random variable X, which is
estimated as follows:

H(X) = −
N∑

x=0

pxlog2(px) (1)

where {0 . . . N} is the range of the sample data (in the case
our 8-bit IDF maps, N = 255) and px is the probability
density function of X (the probability that X takes the
value x), usually estimated by the data’s histogram. Note
that the use of base 2 for the logarithm is the reason why
the unit of H(X) is the bit.

Figures 2a and 2b illustrate the interaction of a pair of
spectral images and their respective renderings, in terms of
information. The sought-after quantity in this study is the
red zone in Figure 2b, a complex overlap of information
between several variables, depicting the difference between
the two images that is common to all illuminants. Not only
do we aim to quantify it, we also wish to understand what
it is made of, to evaluate which IDFs are the least and
most sensitive to illuminant changes. Measures based on
joint entropies, such as the conditional co-information [20]
could be very practical for these tasks. The joint entropy
of a couple of variables depict how much information they
engender, as a couple. Unfortunately, the estimation of
joint probability density functions is burdened by the curse
of dimensionality [21], which implies that the number of
samples needed for an accurate estimation grows almost

exponentially with the number of variables. Relying on
the graph of Figure 2, this means that the more ellipses
are overlapping, the more difficult it is to measure their
overlap. Consequently, the influence of no more than 4 or
5 illuminants could be evaluated for a megapixel image.

Another approach is to assess the extent to which the
effect of variations of illuminant can be detected with a
limited number of degrees of freedom. That is, how much
of the image difference is gained through these variations,
given a representative, meaningful and low-dimensional ref-
erence (see Figure 2c). Let us denote Θ the set of illumi-
nants under consideration and LΥ

L , C
Υ

L , S
Υ

L , L
Υ

C , L
Υ

H the
set of IDF maps obtained when the two spectral images
to compare are rendered with illuminant Υ. We propose
to use the first Principal Components (PCs) of Θ to cre-
ate a small number of reference (so-called synthetic) il-
luminants, that we will denote by PC1,PC2, . . . . Conse-
quently, we aim to measure the average gain of information
of LΥ

L , ∀Υ ∈ Θ, given L
PC1

L , and respectively for the other
IDFs. This gain can be measured by the conditional en-
tropy, defined as follows:

H(X|Y ) = −
N∑

x=0

N∑

y=0

px,ylog2
px,y

py
(2)

where px,y is the joint density function of X and Y , com-
puted by their joint histogram.

On this basis, H(LD65

L |LPC1

L ) denotes the gain of
Lightness-Difference information for a D65 rendering and
HPC1

LL
refers to the average over all illuminants in Θ. Note

that we also allow the reference to be multi-dimensional,
that is to measure the gain given not one but several PCs,
such as H(LD65

L |LPC1

L ,L
PC2

L ). The greater the dimension-
ality of the entropy, the greater the number of samples
required for a reasonable accuracy. Therefore, we consider
only the two first PCs of Θ in this study.

If the average gain of IDF information is low, it means
that only a few PCs are sufficient to accurately predict the
perceptual image difference under any illuminant. Figure
3 shows an example.
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Figure 2. Diagram representation of information interactions. Each ellipse

represents the information spanned by an image. The two largest ellipses,

noted O and R (solid and dashed line) represent an original spectral image

and a given reproduction (respectively). Note that it is likely (but not neces-

sary) that a reproduction contains less information than the original. In (a),

the smaller ellipses describe the renderings o
Υ1 and r

Υ1 , under illuminant

Υ1. The grayed areas therefore represent the information that is discarded

by the human visual system, e.g. the identification of parameric pairs [14].

The white area represent the overlap of information between both render-

ings (mutual information), whereas the yellow parts depict the information

that exist in one rendering but not the other, i.e. the image difference. In (b),

a second illuminant is considered: Υ2. The red areas depict the overlap of

perceived image difference, that is for example the artifacts that are equally

annoying under both illuminants.

Experiments and Results

Illuminants

For our experiments, we used a total of 74 illuminants
in Θ: four CIE daylights (D50, D65, D80 and D100), the
CIE A and Fluorescent Series as well as the full collection
made available by the National Gallery of London [22],
which includes LED, fluorescent and tungsten-based lights.
For the sake of clarity, Figure 4 depicts only the three first
PCs extracted from this set. All illuminants were normal-
ized to the intensity range [0, 1], including the synthetic
ones (given that principal component analysis may pro-
duce negative values).

Figure 3. Examples of LH maps under PC1 (left column) and D65 (right

column). The first row corresponds to the original image, while the second

row depicts the camera model-based reproduction (R3). The conditional en-

tropy value is H(LD65
H |L

PC1

H
) = 5.4 bits, which is relatively high provided

that these maps are coded on 8 bits (256 levels). This means that, in order

to predict hue discrepancies under D65, the first PC of Θ is not a sufficient

reference.
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Figure 4. Representative, so-called “synthetic”, illuminants. PC1 and PC2

respectively contain 59.8 and 88.5% of the energy in Θ.

Images
The 8 multispectral images of natural scenes from Fos-

ter’s 2002 database [23] were used in this study. They con-
tain 31 channels covering the visible wavelengths range.

To create distorted images, we rendered reproductions
for each reference image based on three kinds of distortions:
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Figure 5. Examples of renderings under D65 illuminant. Column-wise: original, R1, R2 and R3.

• Spectral gamut mapping 1: We considered the
spectral gamut of a Canon iPF5000 printer utiliz-
ing CMYKRGB inks, and a naive approach that
uses CIELAB and D65 illuminant to map the out-
of gamut pixels to their closest in-gamut pixels, w.r.t.
∆E∗

ab. From the resulting CIELAB pixels, printable
metamers were selected randomly, yielding a spectral
in-gamut image, denoted by R1.

• Spectral gamut mapping 2: With the same gamut,
we applied the method presented in [5]. We used D65
and A as principal and secondary illuminants, respec-
tively. The resulting spectral reproduction is denoted
by R2.

• Spectral camera model: We simulated how a cus-
tomized 6-channel Sinar camera with known spectral
sensitivity functions would acquire the scenes. Re-
flectance curves were then reconstructed by means of
the pseudo-inverse method (see for instance [24]), us-
ing a reduced set of Macbeth ColorChecker spectra
[25]. No noise nor point spread functions were consid-
ered in the model. The resulting spectral reproduc-
tion is denoted by R3.

Figure 5 gives an example of renderings under D65.
The conversion from reflectance data to CIEXYZ tristimuli
was made w.r.t. a CIE 2◦ standard observer. As previously
explained, we assume that changing the illuminant has a
far greater influence on the rendering than a change of
observer.

Results
Figures 6, 7 and 8 show the results obtained. Note that

over the 8 images of the database, we observed relatively
small standard deviations overall. This shows a limited
influence of the scene on these results.

We note that the three reproductions yield different
trends, obviously depending on their relative characteris-
tics. The naive gamut mapping engenders the worst pre-
dictability in terms of contrast and structure, which is in
accordance to the fact that it does not consider any spatial
information. On the other hand, the second gamut map-
ping presents a very good stability in terms of lightness-
bases features. Not only do different kinds of distortion af-
fect different IDFs, they also affect how these IDFs vary un-
der different illuminants. Even considering a same gamut,
two spectral gamut mapping approaches can render im-
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Figure 7. Average conditional entropies H
PC1

IDF
and H
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IDF
on 8 gamut-

mapped images (R2).

ages that react in drastically different ways to illuminant
changes. It seems however that these graphs have a few
common trends. For instance, the least predictable at-
tributes are always the chroma and hue, and particularly
the latter. These chromatic IDFs also engender the largest

drops between HPC1

LH
and H

PC1,2

LH
, as well as the largest stan-

dard deviations across our experimental data, especially in
the case of R3. Otherwise, the CL is overall the best pre-
dictable IDF.

In the end, when considering a large variety of illumi-
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distorted by means of a 6-channel multispectral camera model (R3).

nants, although one representative can be enough to pre-
dict variations of achromatic differences, chroma and hue
discrepancies are more critical and thus require more in-
formation to be predicted with a sufficient accuracy.

Conclusion

We investigated the influence of scene illuminant on
perceived image quality, from the perspective of informa-
tion theory. Given two multispectral images, an original
and a reproduction (compressed, gamut mapped,..), we ob-
served interesting trends in terms of redundancies of per-
ceived difference through changes of illuminant, with re-
gard to 5 so-called image difference features. We showed
that not only do different kinds of distortion affect differ-
ent quality features, they also affect how these features
vary under different illuminants. Particularly, our prelim-
inary results indicate that changing the scene illuminant
has a lesser influence on achromatic image difference fea-
tures. Consequently, spectral reproduction methods such
as spectral gamut mapping or spectral reconstruction need
not to consider these as much as chroma and hue preserva-
tion across illuminants. This conclusion creates new per-
spectives for instance for the design of a low-dimensional
Profile Connection Space allowing to compare spectral im-
age with a limited number of features.
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Appendix: Image Difference Features

The following equations describe the 5 IDFs used in
[3] and investigated in this study. As previously explained,
these terms are derived from the SSIM index. They are
computed within sliding windows x and y in the compared
imagesX and Y (resp.). Each pixel x consists of a lightness
and two chromatic values: x = (Lx, ax, bx). The chroma
of the pixel is defined as Cx =

√
a2
x + b2x. Note that the

LAB2000HL colorspace [17] is used in this study for it has
improved properties regarding perceptual uniformity and
hue linearity compared to CIELAB.

1. Lightness, chroma, and hue comparisons:

lL(x,y) =
1

c1 ·∆L(x,y)
2

+ 1
, (3)

lC(x,y) =
1

c4 ·∆C(x,y)
2

+ 1
, (4)

lH(x,y) =
1

c5 ·∆H(x,y)
2

+ 1
, (5)

where ∆L(x,y), ∆C(x,y) and ∆H(x,y) denote
the Gaussian-weighted mean of pixel-wise Lightness,
Chroma and Euclidean Hue differences computed for
each pixel pair (x, y) in the window.

2. Lightness-contrast comparison, according to [1]:

cL(x,y) =
2σxσy + c2

σ2
x + σ2

y + c2
, (6)

where σx and σy are the standard deviations in the
lightness component of the sliding windows.

3. Lightness-structure comparison, according to [1]:

sL(x,y) =
σxy + c3

σxσy + c3
, (7)

where σxy corresponds to the cosine of the angle be-
tween x−x and y−y [1] in the lightness component.

The following values were used for the IDF parame-
ters: c1 = c4 = 0.002, c2 = c3 = 10, c5 = 0.02.
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and Sérgio Nascimento, “Approaching ideal observer
efficiency in using color to retrieve information from
natural scenes,” JOSA A, vol. 26, no. 11, pp. B14–
B24, 2009.

[15] S. Le Moan and P. Urban, “Evaluating the per-
ceived quality of spectral images,” in (to be published)
Image Processing, 20th International Conference on.
September 2013, IEEE.

[16] M.D. Fairchild, Color appearance models, J. Wiley,
2005.

[17] I. Lissner and P. Urban, “Toward a unified color space
for perception-based image processing,” IEEE Trans-
actions on Image Processing, vol. 21, no. 3, pp. 1153–
1168, 2012.

[18] “Supplementary material (Color image
difference (CID) measure) available at:
http://www.idd.tu-darmstadt.de/color/papers

(2012/08/14),” .
[19] C.E. Shannon and W. Weaver, “A mathematical the-

ory of communication,” The Bell System Technical
Journal, vol. 27, pp. 379–423, 1948.

[20] A.J. Bell, “The co-information lattice,” in Proceed-
ings of the Fifth International Workshop on Indepen-
dent Component Analysis and Blind Signal Separa-
tion, 2003.

[21] Dan Stowell and Mark D Plumbley, “Fast multidimen-
sional entropy estimation by k-d partitioning,” Signal
Processing Letters, IEEE, vol. 16, no. 6, pp. 537–540,
2009.

[22] “Spectral power distribution
curves, the national gallery:
http://research.ng-london.org.uk/scientific/spd/,”

last check: August 16, 2013.
[23] S.M.C. Nascimento, F.P. Ferreira, and D.H. Foster,

“Statistics of spatial cone-excitation ratios in natural
scenes,” Journal of the Optical Society of America A,
vol. 19, no. 8, pp. 1484–1490, 2002.

[24] J.Y. Hardeberg, F. Schmitt, H. Brettel, J.P. Crettez,
and H. Maitre, “Multispectral image acquisition and
simulation of illuminant changes,” Colour imaging:
vision and technology, pp. 145–164, 1999.

[25] Steven Hordley, Graham Finalyson, and Peter Mo-
rovic, “A multi-spectral image database and its ap-
plication to image rendering across illumination,” in
Image and Graphics, 2004. Proceedings. Third Inter-
national Conference on. IEEE, 2004, pp. 394–397.

21st Color and Imaging Conference Final Program and Proceedings 107

http://www.idd.tu-darmstadt.de/color/papers
http://research.ng-london.org.uk/scientific/spd/

	_INTRODUCTORY_MATERIALS
	Copyright
	Welcome to CIC21!
	Program Committee
	IS&T Board of Directors
	IS&T CORPORATE MEMBERS
	Technical Papers Program
	Welcome and Keynote
	Finlayson, Illuminant Estimation: Back to the Future…pg.1

	Inside the Rainbow
	Samadzadegan, Spatially Resolved Joint Spectral Gamut Mapping…pg.2
	Shrestha, Multispectral Imaging Using LED Illumination…pg.8

	Beyond the Rainbow
	Tsuchida, An Eleven-Band Stereoscopic Camera System…pg.14
	Morovic, Spectra from Correlation…pg.20
	Godau, Spatio-Spectral Image Restoration…pg.27

	Bright Ideas
	Hung, Extreme Spectral Power Distribution…pg.33
	Baek, Monitor Brightness Perception Changes…pg.39
	Fores, Perceiving Gloss in Surfaces and Images…pg.44
	McCann, Chromaticity Limits…pg.52

	Conference Sponsors
	Heavy Metal
	Pjanic, Specular Color Imaging…pg.61

	Heavy Metal Panel
	Evening Talk
	Award Presentations and Keynote
	Colorful Language
	Lindner, Automatic Color Palette Creation from Words…pg.69
	Mirzaei, A Robust Hue Descriptor…pg.75

	Picture Perfect
	Tominaga, Extraction of Artists' Color Features…pg.79
	Jiang, An Exemplar-based Method…pg.85
	Kraushaar, Fogra Roses - Developing a Colour Difference Dataset…pg.92

	Interactive Previews
	Boher, High Spatial Resolution Imaging Colorimeter…pg.96
	LeMoan, Image Quality and Change of Illuminant…pg.102
	Shi, RGBZ Image Restoration by Patch Clone…pg.108
	MariaSaguer, Validating the Black Point Compensation…pg.114
	Shi, Rank-based Illumination Estimation…pg.118
	Ledoux, Which Distance Function Use…pg.122
	Lu, Influence of Texture…pg.128
	Shamey, The Role of Parametric Factors…pg.134
	Cheng, Evaluating Color Shift in Liquid Crystal Displays…pg.143
	Toyota, Principal Component Analysis for Pigmentation…pg.148
	Rezagholizadeh, Maximum Entropy Spectral Modeling Approach…pg.154
	Hensley, Colorimetric Characterization of a 3D Printer…pg.160
	Vazirian, Display Characterization…pg.167

	Do You See What I See?
	Asano, Observer Variability Experiment…pg.171
	Luo, The NCS-Like Colour Scales Based on CIECAM02…pg.177
	Tajima, Experiment on the Relation between Color…pg.180

	Playing with Color
	Fairchild, Metameric Observers…pg.185
	Pedersen, Improved Simulation of Image Detail Visibility…pg.191

	Friday Keynote
	Hersch, Color Reproduction and Beyond…pg.197

	The Skinny on Color
	Madooei, A Colour Palette for Automatic Detection…pg.200
	Xiao, Developing a 3D Colour Reproduction System…pg.206

	Putting Color to Work
	Morovic, 8 Vvertex HANS…pg.210
	Pouli, Color Correction for Tone Reproduction…pg.215
	Shu, Integrated Color Matching Using 3D-Distance…pg.221

	Hard-core Color Theory
	Brill, Spectrum-Locus Convexity…pg.227

	Late Breaking News
	Simon, High Dynamic Range Imaging…pg.231
	Peyvandi, On the Information Content along Edges…pg.236
	Waddle, Real-Time Spectral Rendering…pg.240
	Viggiano, A Simplified Overprint Model…pg.247

	Closing Keynote and Best Paper Awards Presentations


	Author Index



