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Abstract
The recovery of spectral reflectances from camera responses

is usually composed of several distinct operations. We propose
a new approach that connects edge-preserving denoising, deblur-
ring and spectral reconstruction. Each of the steps is based on ac-
tual physical properties of the camera system that can be obtained
using established methods, and the filter eliminates the need for
manual sharpening of the images. Results on both real images
and synthetic data show significant improvements over previous
methods for spectral reconstruction.

Introduction
The recovery of spectral reflectances from camera responses

is usually composed of several distinct operations. Denoising,
deblurring and spectral reconstruction are performed in seperate
steps.

Ideally, the camera image acquisition process can be mod-
eled as a series of linear operations. Light is reflected on a surface,
passes through the optical system of the camera and is discretely
sampled on the sensor. In the most general case, light, surface re-
flectance, and Point Spread Function (PSF) are spatially varying.
Our goal is to recover the original reflectance of the surface. In
a controlled environment, e.g. when capturing artwork in a mu-
seum, we can assume the light source and distribution, the PSF
and the sensor sensitivities to be known.

Images can be blurred because the optical properties of the
filters commonly used in multi-spectral imaging can differ signif-
icantly, causing problems with focusing. At the moment, stan-
dard practice is the manual application of sharpening as a post-
processing step after reconstruction has been performed. Noise is
introduced because filters absorb a large percentage of the light,
requiring high integration times. Denoising is therefore essential,
especially for darker colors and filters with narrow spectral bands.

In general, there exists an infinite set of metameric re-
flectances that lead to the same camera response under given
viewing conditions. The inversion of the image formation process
is therefore inherently ill-posed, i.e. there is no unique solution.
A variety of constraints can be used to regularize the problem,
typically imposing smoothness or a priori knowledge about the
reflectance spectra encountered in a particular application.

In this paper, we describe an image reconstruction approach
that combines denoising, deblurring, and reconstruction of spec-
tral reflectances into a single processing chain. Each step makes
use of actual physical properties of the camera system.

We provide an overview of relevant previous approaches to
spectral image reconstruction in the next Section and then de-
scribe our approach to inverting the image formation process us-
ing a Wiener filter. Results on both real images and synthetic data
are presented and discussed in the last two Sections.

Related Works
Since the field of image restoration is extremely broad, we

restrict our overview to approaches that are most relevant to our
work. In particular, we focus on spectral reconstruction methods
based on Wiener filters. Wiener filters have long been a popular
tool in image reconstruction and have been successfully used for
spectral reconstruction, denoising and deblurring [1]. The linear
nature of the Wiener filter makes it possible to combine a chain of
operators into a single filter, a property that we exploit to combine
deblurring and reconstruction.

The spatio-spectral Wiener filter (SSW) of Murakami et al.
[2] assumes a stationary image, where the image spatial autocor-
relation does not depend on the position. This is efficient for de-
noising, but leads to additional blurring in the final reconstruction
results. Still, the spectral reconstruction results show lower errors
than for separate denoising and reconstruction.

Urban et al.’s [3] edge-preserving spatio-spectral Wiener
(EPSSW) filter avoids this blurring by calculating noise distribu-
tions in the local neighborhood of each pixel based on bilateral
filters, but the obtained images still require additional sharpening
due to the inherent blur of the imaging system.

Our work can be seen as a combination and extension of
these two methods, which are therefore described in detail in the
next section. We propose a way to connect spatio-spectral image
reconstruction and deblurring. The computational power avail-
able today makes it relatively straightforward to combine these
steps, even though the complexity and memory requirements can
increase significantly compared to solving each problem on its
own.

Methodology
Spectral reconstruction is a highly underconstrained prob-

lem; typically an infinite number of solutions are possible. Addi-
tional information, for example on the general type of reflectance
spectra encountered in an application, can significantly improve
results. We use the following a priori information for our n-
channel system, all of which can be acquired using established
methods as described below:

• Covariance of the reflectance spectra Kr
• Noise variance Kε

• Camera spectral sensitivities D = (d1, ...,dn)
T

• System PSF P of size m×m, m odd
• Illuminant spectral power distribution (SPD) p

The covariance of reflectance spectra can be determined
from a low-resolution sampling of typical reflectance spectra en-
countered in the scene. Databases of such spectra exist or can be
created for specific applications such as capturing natural scenes,
paintings or prints [4]. Noise variance can be estimated from the
actual images [5] or uniform patches. The camera PSF can be
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determined using random noise targets [6, 7]. Illuminant SPD
and camera sensitivities are measured using standard devices or
target-based methods [8, 9].

Camera Model
We represent the reflectance of a pixel as a column vector r.

Using the common simplified linear camera model not accounting
for blurring, responses are calculated as

c = DLr+ ε = Ωr+ ε (1)

where ε is additive noise, L is a diagonal matrix containing the
SPD of the illuminant p as diagonal elements and c is the vector
of camera responses (three-dimensional for RGB cameras, six-
dimensional in our system). The camera sensitivities, reflectance
spectra and illuminant SPD are discretely sampled at wavelengths
λ1, ...λl . The system matrix Ω is the combination of camera sen-
sitivities and illuminant.

Figure 1 illustrates the steps involved in the image formation
process (including blurring). The original multi-spectral image is
blurred by the system PSF, sampled to camera responses using
the spectral sensitivities, and noise is added to each channel. The
result is a blurred and noisy camera image that is used as input for
our algorithm, which attempts to invert the process.

The standard Wiener filter (W)
The basic reflectance estimating Wiener filter W for this

model is the matrix

W = KrΩ
T(ΩKrΩ

T +Kε )
−1 (2)

and the Wiener reflectance estimation is then r̂ = Wc.

The spatio-spectral Wiener filter (SSW)
Image noise can significantly degrade the performance of

Wiener reconstruction. To reduce noise we can make use of the
sensor responses in a local window around each pixel. The re-
flectance vector rs for the central pixel c in a window of size w×w
is formed by appending the reflectances of all pixels in the win-
dow:

rs =
(

rT
1 rT

2 · · ·rT
c · · ·rT

w2

)T
(3)

and the camera response vector cs is constructed in the same man-
ner by appending the camera responses for all pixels in the win-
dow.

The spatio-spectral system matrix Ωs is a block-diagonal ma-
trix containing the system matrix once for each pixel in the win-
dow along the diagonal:

Ωs = Iw2 ⊗Ω (4)

where ”⊗” is the Kronecker product and the camera response for
the window can then be calculated as cs = Ωsrs + ε .

Integrating stationary local image correlation for denoising,
the reflectance estimating spatio-spectral filter proposed by Mu-
rakami et al. [2] is calculated as

WSSW = QKrxΩ
T
s [ΩsKrxΩ

T
s + Iw2 ⊗Kε ]

−1 (5)

where Iw2 is an w2 × w2-dimensional unity matrix, Krx is the
spatio-spectral lw2× lw2 covariance matrix, Q is an l× lw2 matrix
that retains the values for only the central pixel of each window,
and l is the number of discrete wavelengths as defined in Equation
1. Assuming the spectral and spatial correlations are separable,
we can write Krx as

Krx = Kx⊗Kr (6)

where Kx is an w2×w2 stationary spatial correlation matrix for
the pixels in an w×w window. The calculations are described in
detail by Murakami et al. [2]. This method significantly reduces
the impact of noise but assumes a stationary image correlation
which blurs edges in noisy images. This is addressed by the de-
noising method partly described below. Furthermore, the SSW
method does not consider the system’s PSF.

Bayesian denoising for edge-preserving spatio-
spectral Wiener filtering (EPSSW)

We closely follow the denoising method proposed by Urban
et al. [3]. Based on bilateral weightings accounting for spatial
distance and range difference, we compute maximum a posteriori
(MAP) values ĉ(i, j) for the noise reduced pixels and the corre-
sponding posteriori noise covariance matrix K̂ε (i, j). This infor-
mation is then used in all subsequent steps which reduces the im-
pact of noise by making use of reasonable assumptions on prior
noise statistics.

According to Urban et al. [3], the noise-reducing Wiener
filter for a pixel position (i, j) is given as

Wd(i, j) = K̄ε (i, j)[K̄ε (i, j)+Kε ]
−1, (7)

and its noise reduced value ĉ(i, j) with covariance matrix K̂ε (i, j)
of the remaining noise are given by

ĉ(i, j) = Wd(i, j)[c(i, j)− c̄(i, j)]+ c̄(i, j). (8)

K̂ε (i, j) = K̄ε (i, j)−Wd(i, j)K̄ε (i, j), (9)

where c̄(i, j) is the estimate of the noise-free camera response
with corresponding covariance matrix K̄ε (i, j). Both are com-
puted by a bilaterally weighted sum of pixels in the w×w window
Fi j centered at pixel (i, j)

c̄(i, j) = ∑
(k,l)∈Fi j

c(k, l)wbilateral [(k, l),(i, j)] , (10)

K̄ε (i, j) = C(i, j)C(i, j)T (11)

where C(i, j) is an n×w2 matrix containing the weighted pixels
c(k, l)wbilateral [(k, l),(i, j)] in Fi j, with (k, l) ∈ Fi j. The weight
wbilateral is the product of spatial wspatial and range wrange weights
defined as

wspatial [(k, l),(i, j)] = exp
(
− (i− k)2 +( j− l)2

2σ2
spatial

)
(12)

wrange [(k, l),(i, j)] = exp

(
−‖c(k, l)− c(i, j)‖2

2
2σ2

range

)
(13)

where c(k, l) and c(i, j) are the corresponding noisy sensor
responses and the parameters σ2

spatial and σ2
range control the decay of

the two weight factors.
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Figure 1. In the simplified linear image formation model, the original multi-spectral image (assumed to be discretely sampled at wavelengths λ1, ...λl ) is blurred

by the system PSF, sampled to camera responses using the n spectral sensitivities, and noise is added to each channel. The result is a blurred and noisy camera

image that is used as input for our algorithm, which attempts to invert the process.

For derivations and more details on the calculations refer to
the original paper by Urban et al. [3].

We use ĉ(i, j) and K̂ε (i, j) to attenuate the influence of noise
in the subsequent spatio-spectral restoration.

Our method
With integration of the system PSF P, we obtain a new

spatio-spectral system lighting and blurring matrix Ωsh that in-
cludes the PSF instead of the identity matrix used in Equation (4):

Ωsh = H⊗Ω (14)

where H is the w2×w2 system blur matrix calculated from the
PSF P. H allows us to write the blurred version v̂ of an input
window v of size w×w (in vector form) as v̂ = Hv. The complete
image formation model calculating the camera responses cs for an
w×w window is then written as

cs = Ωshrs + ε. (15)

For a P of size m×m, the size w of the window is set to
2m− 1 to ensure that the central pixel has the correct value after
applying both forward and backward transformations. The cam-
era response values are then correctly calculated for a region of
size m×m in the center of the window. A larger window can
be chosen to increase the denoising effect, but in most cases this
should not be necessary.

We then adapt the Wiener inverse of Equation (5) to include
the new system lighting and blur matrix Ωsh, as well as the poste-
riori noise covariances from Equation (11) for all window pixels:

WOurs = QKrxΩ
T
sh[ΩshKrxΩ

T
sh +Nε ]

−1 (16)

where Nε is now an w2n×w2n block-diagonal matrix, con-
taining the posteriori noise covariances K̂ε (i, j) for every pixel in
the w×w window as block-diagonal elements.

We model the prior distribution of reflectance spectra by
calculating the mean spectrum r̄ of a representative set of re-
flectances, similar to the one used in calculating the spectral co-
variance matrix. After subtracting r̄ from our reflectances, we
obtain a zero-mean distribution that can be approximated by a
normal distribution as assumed by the Wiener filter.

The final spectral reconstruction is then calculated from the
noise reduced camera responses ĉs = (ĉT

1 , ĉ
T
2 , . . . , ĉ

T
w2)

T (note that
ĉi is defined in Equation (8)) as

r̂ = WOurs[ĉs− (Iw2 ⊗Ω)r̄s]+ r̄ (17)

where r̄s = (r̄T, . . . , r̄T)T is an lw2-dimensional vector.

Results
We compare our method to a basic Wiener reconstruction

(W), the spatio-spectral reconstruction (SSW) of Murakami et al.
[2] and the edge-preserving spatio-spectral filter (EPSSW) of Ur-
ban et al. [3]. We use the following three images in our experi-
ments:

Cow: a segment of the public domain spectral metamerism test
target METACOW [10] (Figure 3). The image has been
designed so that the front and rear part of the cow are
metameric under D65, but differ in color under most other
lights, such as Illuminant A.

Squares: a synthetic image with 9 colored rectangles generated
from Munsell reflectance spectra (Figure 5).

Girl: a real-world image from the Joensuu spectral database [11]
(Figure 4).

The camera images are modeled by taking an original illu-
minated spectral image, blurring it using the system point spread
function, applying the spectral sensitivities of the camera and
adding noise as described in Equation (15) and illustrated in Fig-
ure 1.

Figure 2 shows the spectral sensitivities of the camera used
in the simulations and the system point spread function, as well
as an example of a simulated camera image. The PSF is similar
in shape and scale to point spread functions measured for high-
quality cameras using random noise targets [7, 6]. For the sake
of simplicity we use the same stationary PSF for all channels,
although the model allows for using a different spatially varying
PSF for each channel.

The reconstruction results for the ”Cow” image are shown
in Figure 3. An example of standard Wiener reconstruction is
included for this image, but the reconstruction results for the front
and rear are clearly not metameric under D65. Since all other
methods perform significantly better, we do not show the standard
Wiener results for the other images.

Figure 4 shows the reconstruction results for the ”Girl” im-
age, rendered under illuminant D65. The synthetic ”Squares” im-
age in Figure 5 contains the sharpest edges of all test images. The
previous methods do not account for blurring, the reconstruction
results are therefore just as blurred as the camera image.

The table below shows the results for different noise levels,
using a constant PSF. For all three images, our method leads to a
significantly smaller RMSE (root mean square error). The Signal-
to-Noise Ratio (SNR) for an image I with mean signal power Ī and
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mean noise power ε̄ is calculated as SNR = 20∗ log10(Ī/ε̄).

RMSE for increasing noise levels

SNR Image W SSW EPSSW Ours

42
cow 0,028 0,025 0,025 0,016

squares 0,035 0,035 0,033 0,012
girl 0,046 0,046 0,045 0,038

32
cow 0,036 0,028 0,027 0,019

squares 0,037 0,036 0,033 0,015
girl 0,048 0,047 0,046 0,039

22
cow 0,045 0,036 0,035 0,030

squares 0,040 0,039 0,035 0,024
girl 0,058 0,049 0,047 0,044

In all cases the standard Wiener filter (W) performs worst,
the spatio-spectral Wiener filter (SSW) shows lower errors es-
pecially for higher noise levels, and the edge-preserving spatio-
spectral Wiener filter (EPSSW) obtains the best results among all
previous methods. The edge-preserving properties of the EPSSW
filter only lead to small improvements due to the lack of sharp
edges in the blurred images. As expected, our method shows
clear improvements for blurred images, since none of the previous
methods take blurring into account. Only for very high noise lev-
els (SNR < 20) the deconvolution can lead to strong artifacts, and
the error can be larger than for the other methods. If the PSF is
not used in the reconstruction process, no deblurring is performed
and our method performs identically to EPSSW.

Discussion
The integration of deconvolution, denoising and spectral re-

construction works well in our simulations, and is based on actual
measured properties of the imaging system. On both synthetic
and test images, the obtained reconstruction results exhibit a lower
RMSE and are visually superior to the previous approaches when
the camera images are blurred. If no deblurring is applied, our
approach is identical to the current state-of-the art, the edge pre-
serving Wiener filter of Urban et al. [3].

For images with a very strong noise component, the decon-
volution can lead to artifacts. Under controlled conditions this
is rarely of concern, the noise levels used in our experiments are
already higher than those typically encountered in high-quality
spectral camera systems. For other applications it is possible to
reduce the deconvolution component of the operator, avoiding the
occurence of artifacts while still providing some amount of de-
blurring. A reference implementation of the algorithm is available
on the authors homepage 1.
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(a) The spectral sensitivities of our 6-channel test system.
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ing the first channel of the ”squares”
image.

Figure 2. Our simulated test system consists of a 6-channel camera with

sensitivities as shown in 2a and a single PSF that is used to blur all channels

2b. The result is a blurred and noisy image for each channel 2c.
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(a) Original under D65 (b) Original under A

(c) W, RMSE = 0.035682 (d) SSW, RMSE = 0.027861

(e) EPSSW, RMSE = 0.027325 (f) Ours, RMSE = 0.01936

Figure 3. Reconstruction results for the ”cow” image, rendered under illu-

minant D65. It is a segment of the public domain spectral metamerism test

target METACOW [10], which was designed so that the front and rear part of

the cow are metameric under D65.

(a) Original (b) SSW, RMSE = 0.047142

(c) EPSSW, RMSE = 0.045901 (d) Ours, RMSE = 0.039503

Figure 4. Reconstruction results for the ”girl” image, rendered under il-

luminant D65. The image is available from the Joensuu spectral database

[11].
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(a) Original (b) SSW, RMSE = 0.035815

(c) EPSSW, RMSE = 0.033304 (d) Ours, RMSE = 0.015302

Figure 5. Reconstruction results for the ”squares” image, rendered un-

der illuminant D65. The 9 colored rectangles were generated from randomly

selected Munsell reflectance spectra.
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