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Abstract

Spectral reflectance is a key material property and contribu-
tor to object appearance. While it has long been known that reflec-
tance in a given wavelength interval correlates strongly with
reflectances in neighboring ones, this correlative property has only
been exploited implicitly before. The present paper therefore pre-
sents a new approach to spectral analysis and synthesis that con-
sists of first deriving a spectral correlation profile and then using
it for a direct and full sampling of the spectral and color gamuts
corresponding to it. The resulting technique can be used to gener-
ate natural-like spectra (or spectra following other, specific corre-
lation properties) and it can also be incorporated into Bayesian
models of spectral estimation.

Introduction

How much incident light an object reflects as a function of wave-
length across the visible part of the electromagnetic spectrum is
part of its material properties and also strongly influences its ap-
pearance. Consequently, spectral reflectances have been studied
extensively from the perspectives of their dimensionality (Krinov,
1947; Cohen, 1964) or spectral and colorimetric gamuts (Chau and
Cowan, 1996). Attempts have also been made to quantify the set of
all natural reflectances (Schrodinger, 1920; Morovi¢ et al., 2012),
to generate natural reflectances (Morovi¢ and Finalyson, 2006) and
to study them from the point of view of the human visual system’s
(HVS’) evolution (Tkacik et al., 2011).

Here, Tkacik et al. (2011) have collected a large set of calibrated
and color-characterized images from the Okavango Delta of Bot-
swana, which is like where the human eye is thought to have
evolved. The study of these images indicates the constraints under
which the HVS had to operate, such as what surface properties
needed to be distinguished amongst on a physiological, pre-cortical
level.

Brainard et al. (2006) then used such data and its properties to
define a probabilistic model of human vision that was able to ele-
gantly predict HVS behavior. Key to this model was a number of
priors about the environment that surrounds us, such as the spatial
correlation of sensor responses and the correlation of responses
from different cone types. The analysis of a large quantity of both
digital RGB images and LMS cone responses corresponding to
them showed that RGBs in a pixel-level neighborhood correlate
well with each other, meaning that spatial changes in a scene are
typically gradual instead of abrupt, and that cone responses also
change gradually, resulting in a good correlation of LMS respons-
es.

Seeing the strong LMS correlations in the Brainard et al. paper
lead to the question of whether these correlative relationships also
hold at a lower — spectral — level, and whether it would therefore
be possible to predict not cone responses or a dimensionally-
reduced representation of reflectance spectra (Singh et al., 2006),
but to execute a Bayesian model directly in a reflectance domain,
with appropriate reflectance priors. That such correlation is likely
to be high is already implied in multivariate analysis, as will be
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shown in more detail later, and also in the analysis of hyperspectral
data, where high spatial and spectral correlation is taken advantage
of for the sake of data reduction and accelerated analysis (Smith et
al., 1985).

The following sections will therefore present an analysis of spec-
tral correlation (which will be shown to be complementary to the
multivariate analysis typically applied in this field), followed by a
method for synthetizing natural spectra using the principle of cor-
relation (which enables a direct, uniform sampling of spectral re-
flectance space that follows the distribution of a measured dataset),
and finally a comparison of such correlation-synthetized spectra
with measured spectra whose statistics they were designed to have.
All of this will be in preparation for the correlation principle’s
future use both as a means of analysis and as a mechanism that can
be integrated in Bayesian models.

Spectral Correlation

In multivariate analysis the objective is to find the principal com-
ponents of variation (cf. Morovi¢ (2002) for a detailed analysis),
which allows for a representation of the original data in a de-
correlated way that therefore reduces its dimensionality. Instead,
spectral correlation will here be looked at with the aim of preserv-
ing correlation and characterizing its specific behavior.

Spectral correlation is understood to be the relationship of R(A’)
against R(A""!), where R() denotes reflectance and A’ and A" are
the wavelengths of neighboring intervals in nanometers. Such rela-
tionships are easily visualized, with Fig. 1 showing them for the
SOCS dataset of 53489 measured samples, with pseudo-colored
dots indicating their respective wavelengths.

Figure 1. Correlation plot of the SOCS reflectance data set plotting R(Jf”)
against R(2') with the dots’ pseudo-colors indicating wavelength.

A perfectly correlated data set would fall on the [0 1] diagonal line
in the above plot and would only be possible for non-selective
reflectances where R(A) = R(A"). Fig. 1 clearly shows that the
relationship between neighboring wavelengths is not arbitrary and
also suggests that its nature may vary across the visible range. This
is consistent with previous studies that have used multivariate
analysis to show that the SOCS data can be well represented by 8-
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13 linear bases, depending on whether the mean or the maximum
reconstruction error is to be below 0.5 AE*,, (Kohonen, 2006).

It is also apparent from Fig. 1 that there are biases and outliers and
that not all wavelengths have an equal spread along the diagonal
axis. A wavelength-by-wavelength view (Fig. 2) shows the differ-
ences between individual correlations in more detail.

Figure 2. Correlation plot of the SOCS reflectance dataset plotting R(ﬂ’”)
against R(ﬂ’) for each wavelength from 400nm (showing the relationship be-
tween 400nm and 410nm) up to 690nm (showing the relationship between
690nm and 700nm) with dots pseudo-colored according to wavelength.

For instance, there is a clear bias towards the upper-left triangle of
the correlation plot, meaning that there are more cases where
R(A™) has a larger reflectance than R(A’) compared to the opposite
case. However, the above clearly contains noise, which can come
either from the measurement process or from inconsistencies in the
measured surfaces themselves, and is also dependent on spectral
sampling (i.e., correlation between 1 nm intervals would be differ-
ent than between 10 nm ones).
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Figure 3. Per-wavelength view of the ranges between R(/lf) and R(ﬂi+7). Big
upper and lower triangles show the min and max of the entire set, while small-
er triangles connected by a line show the 90% of the range (removing the
lower and upper 5% of data), with the median plotted as a cross on the line.

To avoid over-analyzing the data, statistical filtering will be used
to maintain a high percentage of the variation and discard upper
and lower percentiles. Fig 3 shows the per-wavelength ranges of
neighboring wavelength differences, R(A) - R(A™), both based on
all data (bigger lower and upper triangles) and on 90% of it (small-
er triangles connected by a line) having discarded the top and bot-
tom 5% on a per wavelength basis. A significant discrepancy can

be seen here between the overall ranges and those obtained by
removing the top/bottom 5% of the data (jointly accounting for
5349 sample points plotted in Figs. 1 and 2). Another insight is that
the medians and the post-filtering min/max values are closely clus-
tered around 0, which indicates a high probability of close to per-
fect correlation — zero here meaning no change from R(A) to
R(A™') and small absolute values representing a smooth change in
reflectance. For a more complete view of the dataset, Fig. 4 shows
its frequency histogram.

5OCS Reflectance Set (53489 samples)

Figure 4. SOCS per-wavelength histogram of the range of differences be-
tween R(A) and R(A™") without the top/bottom 5% of the difference data.

After statistically filtering out the top and bottom 5% of neighbor-
ing wavelength interval differences, the remaining data is shown in
Fig 5. Note, however, that this has no bearing on the reflectance
synthesis method presented in the following section and only
serves the purpose of discounting outliers upfront. A better under-
stating of the source of outliers is planned for future work.

Figure 5. Correlation plot of the SOCS reflectance data after removing the top
i+1

and bottom 5% of the range of differences per wavelength, plotting R(A™")
against R(I) with dots pseudo-colored depending on wavelength.

To extend the above analysis, which has focused on the SOCS
dataset, which is by far the largest of its kind in terms of the num-
ber of samples, Fig. 6 shows per-wavelength histograms of the
range of differences for three other datasets: Westland (Westland,
2000) and Natural (Krinov, 1947), which contain measurement of
‘natural’ surfaces, and a set of 1269 samples from the Munsell
Book of Color (Parkkinen, 1989). The high degree of correlation
seen in the SOCS data is again present, although each dataset has
its own specific correlation profile.
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Figure 6. Top to bottom: Westland, Natural and Munsell datasets shown as
per-wavelength histograms of the range of differences between R(A) and
R(A™") without the top/bottom 5% of the range difference data in each set
respectively.

The following section shows how, given such characterization of a
dataset, it is possible to re-create it synthetically from first-
principles while maintaining its correlation profile. This allows for
a computational design of datasets, following simple rules that can
be established without the need for large numbers of manual meas-
urements. For instance, given the set of spectral reflectances of
individual Neugebauer Primaries (ink overprint combinations), it is
possible to algorithmically generate a sampling of all possible
reflectances that their combinations can give rise to.

Spectral synthesis from correlation

The task of generating natural reflectances, i.e. reflectances that are
like those found in nature, as characterized by a given set of fea-
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tures — either derived from measurements or defined a priori, can
be approached from a variety of angles. Ultimately such synthetic
generation of natural-like spectra has the aim of representatively
sampling a small sub-space of the spectral domain, delimited at
least by constraints on physical realisability (all reflectances falling
within the [0 1] range), or further constraints dictated by properties
of measured data. In the latter case the task is first to extract such
fundamental measured data properties.

Multivariate analysis aims to find the principal axes of variation in
a dataset, called principal components or characteristic vectors,
which define a coordinate system that is de-correlated and is better
suited to representing the data. Here “better suited” means repre-
senting data in a dimensionality-optimal way. However, the chal-
lenge is to know how representative measured datasets are. The
aforementioned principal components are closely tied to the fre-
quency of occurrence of data. A dataset containing 99 identical
reflectances and 1 different one will have the first principal com-
ponent match the 99 reflectances exactly as that is the principal
direction present in the data. However such a dataset could also be
treated as only 2 reflectances, in which case the first principal
component would be very different. In measured datasets, that aim
to be representative of some environment, this is a crucial question
to address.

Another approach would be to consider a delimiting envelope of
the dataset and sample the interior. This could be done for example
by means of the convex hull in the reflectance domain (e.g. 16D
for 400nm to 700nm at 20nm intervals, or 31D for the same range
at 10nm intervals). Once a convex hull is obtained, the challenge is
one of sampling it in a representative manner. Given the dimen-
sionality of the convex hull, and it being a sub-polytope of the [0
1] hypercube, this is simple in principle but computationally ex-
pensive. A straightforward uniform sampling approach would re-
sult in the vast majority of samples being outside the spectral
gamut. Likewise, a random generation of samples in the [0 1] hy-
percube range would also likely yield many out-of-spectral-gamut
samples, rendering it similarly inefficient.

While the above approaches are certainly valid, the spectral corre-
lation analysis shown in the previous section enables a new way to
address this challenge. Here the core idea is that the spectral corre-
lation in a dataset expresses the magnitude and direction of differ-
ences between consecutive wavelengths. Let these be denoted as a
sequence of Al and AL, for a given wavelength 2! defined as:

Mo = ming, [AL- A1

Nimax = max; [A- 2] ey
The set of Ay, and ALy, are per-wavelength ranges of differences
between neighboring wavelengths taken over an entire dataset.
These N, — I values, where Ny, is the number of spectral inter-
vals samples (e.g., 16, 31, ...), determine the correlation profile of
the dataset. Without loss of generality, let Al Alax] have been
suitably filtered to discount outliers or measurement noise, as out-
lined in the previous section. The constraints for a synthesis from
this correlation profile also have to satisfy physical realisability,
hence any reflectance at A' that differs from its previous wave-
length by up to (AL ins Ximax] and lies within the range of [0 1] is
considered a feasible sample.

The aim of synthesizing reflectances according to the spectral cor-
relation profile is to define a generating set that is characteristic of
an original correlation profile. The set should therefore describe
the original assumptions of correlation and not give up any other
properties it may have such as gamut or dimensionality. In both
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cases a determining factor is spectral variation, hence it is not so
much an objective to uniformly sample the correlation profile
space, but rather sample it descriptively (i.e. maintaining the corre-
lation profile and being representative of dimensionality and gam-
ut).

Without loss of generality a 400nm to 700nm range at 20nm steps
resulting in 16 spectral samples per reflectance is used here. The
correlation profile is then described by a 15 x 2 matrix of [Aly,
M onax] values per wavelength as shown above in Eq. (1). For a sim-
ple case where both min and max are fixed and constant at 0.1
along the wavelength range Fig. 7 shows an example of reflectanc-
es that satisfy both the constraint of correlation and physical real-
isability.

lation of 0.1.

The per-wavelength correlation profile of the above data set is then
shown in Fig. 8, and as expected shows a synthetic and regular

Figure 8. Per-wavelength correlation plot of synthetic reflectances with con-
stant, wavelength independent correlation at 0.1.

In Fig. 7 the initial seed for generating the reflectances were values
of [0, 0.2, 0.4, 0.6, 0.8, 1] at 400nm and each subsequent wave-
length was then generated as follows:
L L L

R(Ai*1) = R(A') [R(A‘) +’1171ax] @)

RG [RG) ~ 2y @
where R(2') is the set of all partial reflectances up until A' (i.e. X'
J400nm, R(AYDCOOC 0 So, each set of values at a subse-
quent wavelength branches in two directions, one in the max-
direction and one in the min-direction, much like a binary tree

would. Starting with a single value, the tree would result in 216
leaves that each represent a different reflectance branch, so in the
above example, having started from six uniformly distributed val-
ues in the [0, 1] interval the total number of branches is 6*2'® =
393,216. However some of these are not valid reflectances and
exceed the [0 1] interval (e.g. starting at 1 the only possible branch
is the min-branch, etc.). Such branches are pruned at each wave-
length and reduce the complexity of the computation both in speed
and in memory requirement. Once the last wavelength is comput-
ed, the same process is done in reverse order, starting from the
initial seed values at 700nm and computing all branches down to
400nm with the ranges inverted, as follows:
L L L
e o
[R(2) + Aim]  R(2')

In this synthetic example with a constant, wavelength independent
correlation difference where for all i [Ximin =-0.1, M = 0.1] the
total number of reflectances after pruning is 187,440 which is just
under half of all generated samples and the time to generate this
entire set is ~140 ms on a 2.66 GHz Intel Core i7 with 8GB RAM.
For a real-world example instead, the correlation profile of the
SOCS data set is used below to generate reflectances as outlined
above. The filtered correlation profile here is that shown in Fig. 3
above and Fig. 9 shows the ‘forward’ direction (Formula (2)) and
‘reverse’ direction (Formula (3)) of the synthesized reflectances.

Figure 9. Forward (top) and reverse (bottom) direction of synthesized reflec-
tances based on the SOCS correlation profile.

Unlike the choice of initial seed values at wavelengths A' and A~,
only representing the extremes of the correlation ranges is not arbi-
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trary. Given a set of reflectances and all combinations of per-
wavelength extreme values, these reflectances are sufficient to
describe the set fully by virtue of the preservation of convexity
between the reflectance domain and colorimetry. Since colorimetry
is a linearly weighted sum over all wavelength samples, any sam-
ple that can be expressed as a weighted (convex) linear combina-
tion of any number of base reflectances is contained in terms of the
spectral and color gamuts of that set. Hence in this way a linear
model basis, not to be mistaken for a PCA based linear model ba-
sis, can be generated that inherently contains the per-wavelength
correlation properties and completely describes the color and spec-
tral gamuts. A PCA based linear model basis can be thought of as
the opposite of this correlation approach. The correlation method
delimits the spectral and color gamuts, while PCA maximizes de-
correlation without heed for gamut.

This min/max representation also deliberately ignores the intra-
wavelength distribution of the range since that is related to the
actual samples taken in a dataset (see the earlier example of 99
equal reflectances and one different one) rather than intrinsic cor-
relation properties.

Thanks to such per-wavelength convexity, combinations of per-
wavelength extremes both in relative (with respect to previous and
subsequent wavelengths) and absolute terms (the absolute reflec-
tance factors possible) can be generated in the following construc-
tive approach to building a basis:

1. For each A in the range of [A! =400, AN = 700]nm:

2. Start at wavelength AJ with an initial seed of [0 1], the
two extremes of physical realisability.

3. Build a left-to-right binary tree based on A i }»imax] for
i > j based on Formula (2) and a right-to-left binary tree
based on [, kimax] for i <j based on Formula (3).

4. Prune both left-to-right and right-to-left branches to sat-
isfy the physical realisability constraint.

5. For each partial reflectance from the right-to-left branch
combine with all reflectances with the left-to-right
branch to create a full set of reflectances for AJ.

The above procedure results in an exhaustive, fully descriptive set
of reflectances that envelopes the original data set defined by the
A i Alas] ranges. Fig. 10 shows the first two such data sets start-
ing at 400nm and 700nm using the SOCS correlation profile.
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initial seed values of [0 1] at 400nm (top) and 700nm (bottom).

The above approach enables the sampling of spectral data based on
a priori information in the form of spectral correlation and does so
without the sampling bias likely present in measured data sets. The
approach is systematic and efficient compared to other methods
that either sample large domains of spectral space that are invalid
(out of spectral gamut), do so non-uniformly, or take into account
the frequency of measured data that need not be meaningful.

Comparison of measured and synthetized
spectra

The first type of comparison that can be made between synthesized
and measured reflectances is directly in terms of their correlation
profiles. Taking the reflectances generated to match the SOCS
dataset’s profile (Fig. 9) and performing the same correlation anal-
ysis as shown in the previous section, the profile (Fig. 11 bottom)
matches exactly that of the SOCS data. This comes as no surprise
since it is the correlation profile that is the principle of synthesis
here.
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Figure 11. Per wavelength reflectance differences (top) and per wavelength
range of differences (bottom) of the synthetically generated reflectances,
based on the SOCS correlation profile.

Fig. 10 also shows that an even closer match to the original data set
can be had if the per-wavelength absolute reflectance values are
also considered. To do so both [Ali, el of neighboring wave-
length correlation as well as Al Anae] OF absolute reflectance
values that serve as per wavelength seeds are needed. Results using
this approach will be shown in the final paper.

Second, it is also possible to consider the measured and synthetic
spectra from the perspective of multivariate analysis and to com-
pute their principal component bases. Fig. 12 therefore shows the
first five SOCS bases both for the measured (accounting for 99.7%
variance) and the synthetic data (accounting for 99.8% variance).

o} o}
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Figure 12. PCA bases of measured (left) and synthetic (right) SOCS spectra.

For comparison, Fig. 13 shows the same analysis for the 1269
Munsell spectra, where the first five bases account for 99.9% of
the measured and 99.6% of the synthetic dataset’s variance.

. _“/I/\J\/

Figure 13. PCA bases of measured (left) and synthetic (right) Munsell spec-
tra.

While the bases aren’t identical for either dataset, they show a
great deal of similarity with the measured-synthetic relationship
being clearly closer than that of the two measured datasets. The

source of their differences also follows from how the synthetic data
is generated, where it is not its intent to match the measured data
but effectively to sample the full gamut of all spectra that have the
measured dataset’s correlation profile. That the gap is greater for
the Munsell than the SOCS data is also consistent with the former
dataset both being smaller and having a smaller gamut.

Finally, it is also worth computing the PCA bases of the spectra
synthetized for a ‘flat’ correlation profile, like the one shown in
Figs. 7 and 8 where the correlation bounds are a constant £0.1. Fig.
14 therefore shows the first five bases of that set of correlation-
synthetizes spectra, which account for 99.1% of their variance.
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Figure 14. PCA bases of spectra synthesizes using a constant +0.1 correla-
tion profile.

The bases in Fig. 14 resemble those of a sine basis, as also used in
the Fourier series. This can be read as it being the specific correla-
tion profiles of natural spectra that account for their shapes being
other than those of simple sine/cosine functions. How the correla-
tion profile relates to the derived PCA basis in general is another
area of future investigation.

Conclusions

The correlation method of spectral reflectance synthesis presented
here is a fundamental alternative to methods using the bases de-
rived from multivariate analysis. Instead of de-correlating spectra,
it starts from a characterization of a spectral dataset’s correlation
profile and then applies it as parameters for direct wavelength to
consecutive wavelength synthesis. The end result is a set of spectra
that directly and fully sample spectral and colorimetric gamut of a
spectral dataset in an efficient way.

In terms of next steps, spectral synthesis from correlation can be
applied to Bayesian models like those presented by Brainard et al.
(2006), with the correlation profile acting as a prior, which — un-
like a convex hull spectral gamut — is applicable at a pixel level,
and with the model’s output being spectral reflectance in its full
dimensionality. As far as the method itself is concerned, it would
also be possible to extend it by adding a specific sampling of the
base reflectances whose generation was described here, e.g., fol-
lowing a Gaussian distribution between min-max extremes consid-
ered here. The synthesized reflectances generated in this way could
also be further constrained by the naturalness constraint (a convex
combination of measured natural reflectances is also a natural re-
flectance) as presented by Morovi¢ (2002) which would bound the
synthesized reflectances to the convex hull of the originating data
sets, if that is desired, while still maintaining the spectral correla-
tion profile.
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