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Abstract
LED illumination based multispectral imaging is getting

much attention in recent years due to its fast computer controlled

switching ability, availability of many different LEDs, robustness,

and cost effectiveness. In this paper, we propose a system which

uses an RGB camera along with two or three combinations of

three different types of LEDs in order to acquire multispectral

images of six or nine channels. Optimal LED combinations

are selected so as to produce accurate estimate of spectral

reflectance and/or color. The system is rather simple to realize.

Moreover, it is faster as it requires only two or three shots,

unlike state of the art multiplexed LED illumination based systems

which require as many shots as the number of channels that

a system can acquire. The proposed system can be useful in

general multispectral imaging applications. The system has been

evaluated with both the natural images and paintings. The results

from the simulation experiments were promising, indicating the

possibility of the proposed system as a practical and feasible

method of multispectral imaging.

Introduction
Multispectral imaging has many advantages over traditional

three channel (usually RGB) color imaging. It is less prone to

metamerism, produces higher color accuracy, and unlike digital

cameras, it is not limited to the visual range, rather can also

be used in near infrared, infrared and ultraviolet spectrum as

well, depending on the sensor responsivity range. Spectral

reflectance of a scene which represents the unique property of

an object, can be recovered from the images acquired with the

spectral imaging systems. Multispectral imaging, therefore, has

widespread application domains, such as remote sensing [1],

astronomy [2], medical imaging [3], biometrics [4], culture and

heritage [5, 6] and many others.

Many different types of multispectral imaging techniques

and systems have been proposed in the literature. In a typical

filter-based imaging system, either a set of traditional optical

filters in a filter wheel, or a tunable filter [7, 8], or in front of a

high quality digital camera [9–11] or a stereo camera [12, 13] are

employed. Multispectral filter array (MSFA) [14–17] is another

type of multispectral imaging technique which extends the filter

array from 3-channel like in Bayer pattern further, allowing to

capture more than 3 bands.

Another promising technique of multispectral imaging,

which is of our primary interest in this paper, is based on a

multiplexed LED (Light Emitting Diode) illumination [18–20]. In

a typical LED illumination based multispectral imaging system,

a set of n different types of LEDs are selected, each type of

LED is illuminated in a sequence, and a monochrome camera

captures an image under the illuminated LED, thus producing

a n band multispectral image. Such a system modulates the

illumination and provides a multispectral light source. LED

illumination based multispectral imaging has been used in several

applications like biometrics [4], medical imaging [3] and film

scanner [21]. This has got much attention in recent years because

of the advantages of the LEDs: fast computer controlled switching

ability, robustness, and cost effectiveness. Availability of many

different color and high intensity LEDs with peak weavelengths

spanning the whole visual range and even infrared region has

made the construction of more effective multispectral system

possible. Shrestha et al. [21] recently proposed a LED based

spectral film scanner. Tominaga and Horiuchi [20] proposed

multispectral imaging by synchronizing capture and illumination

using programmable LED light sources. Studies are being done

to anayze and address different issues with the LED based

multispectral imaging. Spectral variability of LEDs with angle

and time of usage is one example of such studies, done by

Martinez at al. [22]. They found that white light LEDs designed

with a blue emitting LED coated with a yellow emitting phosphor,

emit light whose spectrum changes as a function of the angle and

time. On the other hand most of the single color LEDs are found

to be invariant compared to the white lights, and hence they are

recommended to be used in LED based multispectral systems.

Shrestha and Hardeberg [23] has proposed a binary tree based

LED matrix/panel design method which produces an optimal or

suboptimal arrangement of LEDs for equal energy and uniform

ligthing in a LED based multispectral imaging system.

Most of the state of the art LED based multispectral imaging

systems require many different LEDs and many shots (n shots

for n types of LED) in order to acquire a multispectral image

of a scene, and this also makes the systems complex, limiting

their practicability and feasibility. In this paper, we propose an

efficient LED illumination based multispectral imaging system

that requires fewer shots, using an RGB camera. Instead of

lighting a LED at a time sequentially, combinations of three

optimal LEDs are selected, each combination of LEDs is lit at

a time, and a three band image is captured by the camera each

time. With n shots, we can acquire 3n band multispectral images.

The system is practical, and easily and cheaply realizable. It

can be used as a general multispectral imaging system in many

different applications including in culture and heritage artworks.

We present the results with the natural images, and painting

images using a famous painting, the Scream, by Edvard Munch

from 1893 as an example.

After this section, we present next the proposed system and

the methodology. We then present experiments and results. The

results will be discussed next, and finally we conclude the paper.
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The system and methodology
The proposed LED illumination based multispectral imaging

system comprises of an RGB camera, LED panel(s) and a

microprocessor based controller (or a computer), as illustrated

in Figure 1. A LED panel is built with combinations of three

different types of LEDs, or alternatively, more than one LED

panel, with each panel comprise of three types of LEDs can be

used. We assume that the LED panel is made in such a way that

the resulting illumination from the panel is uniform.

LED

Panel

Computer

RGB Camera

400 500 600 700

Figure 1. Illustration of the proposed system

The LED combinations are selected such that each LED in a

3-LED combination splits one of the three spectral sensitivities

of the camera in a different region so as to allow the system

to capture an image effectively in different spectral bands

(wavelengths) along the visual range of the spectrum. Many

different types of LEDs whose wavelengths more or less cover

the whole visual range of the spectrum are now available in the

market. Such a set of LEDs can be used in order to select optimal

combinations of LEDs. The set is divided into three groups based

on their peak wavelengths lying in the blue, the green, or the

red regions of the sensitivities of the camera used to build the

system. A 3-LED combination is lit and image of a scene is

captured with the camera, under the resulting illumination. This

gives a 3-band image. n such different 3-LED combinations give

3×n camera responses. These camera responses correspond to a

3× n-band multispectral image, captured through the modulated

light, theoretically, in 3 × n different wavelengths. Spectral

reflectance of the scene is then estimated from these 3×n camera

responses, using an appropriate spectral estimation method. We

present this in details along with the system model in System

Model subsection below.

Optimal selection of 3-LED combinations can be done

through exhaustive search based on accuracy of the spectral

and/or color reproduction, depending on the application re-

quirement. The exhaustive search method is computationally

expensive as it checks every possible combination. However, by

limiting the number of LEDs in the given set, and also the value of

n to say 3, the search space can be kept computationally tractable.

Moreover, repetitions of the LEDs can be avoided while searching

for the different combinations.

System model

Each shot in a n-shot system produces 3-band image

corresponding to the three camera sensitivities. Let S =
[sR,sG,sB] be the matrix of spectral sensitivities of the three

channels of the camera, and lR
i , l

G
i and lB

i denote the spectral

power distributions (SPD) of the 3 LEDs from the red, green and

blue regions respectively, in the ith LED combination; i = 1 . . .n.

Then, the spectral power distribution of the resulting illumination

is given by Li = sum(lR
i , l

G
i , lB

i ). Let R be the spectral reflectance

of the surface captured by the camera, then the camera responses

Ci = [cR
i ,c

G
i ,c

B
i ]

′ are given by:

Ci = Sdiag(Li)R+ηi; i = 1 . . .n (1)

where ηi is the acquisition noise. C′ denotes transpose of

the matrix C. The combined 3× n responses are then given by

C = [C′

1, . . . ,C
′

n]
′.

The estimated reflectance (R̃) is obtained for the correspond-

ing original reflectance (R) from these camera responses, using an

appropriate spectral estimation method. We use a simple linear

regression method here in this paper. Let Ctrain and C be the

camera responses of the training and the test targets respectively.

Then the estimated reflectance is given by:

R̃ = RtrainC+
trainC (2)

The performance of the system can be evaluated by the

accuracies of the estimated spectral and/or colorimetric values.

For this, the most commonly used RMS (Root Mean Square) error

has been used as the spectral metric, and the ∆E∗

ab (CIELab color

difference) as the colorimetric metric.

Experiments
In this section, we discuss the experimental setup, and then

present experiments and results obtained. All the experiments are

carried out through simulations.

Experimental setup
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Figure 2. Spectral sensitivities of the

Canon 20D camera

The experimental setup

comprises of spectral data

of a camera, LEDs, surface

reflectances of the training

surfaces, and the test hyper-

spectral images. A Canon

20D camera whose spectral

sensitivities shown in Figure 2

is used.

For the LED selection experiment, we used the same 35

LEDs used by Shrestha et al. in [21]. The spectral power

distributions of these LEDs were measured from the real LEDs

from the market. Among the 35 LEDs, there are several LEDs

that have the same or almost the same peak wavelengths and the

shape. In order to make the exhaustive filter selection feasible,

such similar LEDs are skipped, keeping the LEDs that cover the

visible range more or less uniformly. We selected 19 LEDs from

the 35, and they are ultimately used in the selection of the LEDs

for building the proposed multispectral imaging system. Spectral

power distributions of these LEDs are shown in Figure 3. The

individual LEDs are numbered for identification.
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Figure 3. Normalized spectral power distributions of the 19 LEDs used

In order to evaluate the performance of the system,

hyperspectral images have been used to acquire simulated images,

and also as references. The evaluation is done for natural scenes

as well as for paintings. For this, eight natural scenes from

Nascimento et al. [8] have been used. Figure 4 shows the

RGB images generated from these hyperspectral images under

D65 illuminant. For the painting, we have acquired calibrated

hyperspectral images of a famous painting by Edvard Munch from

1893, the Scream, in the National Museum of Norway, using a

hyperspectral camera, HySpex-VNIR 1600 from Norsk Elecktro

Optikk. The hyperspectral image has 160 spectral bands from

415nm to 990nm in 3.6nm resolution. However, we used the data

in the visual range (414nm-700nm) only. Since the size of the

whole image is quite large, we used the three interesting regions

of the whole painting. These regions are shown in Figure 5. We

used the central 300×300 block of the images, in order to lower

computation time.

    
Scene #1 Scene #2 Scene #3 Scene #4 

    
Scene #5 Scene #6 Scene #7 Scene #8 

Figure 4. RGB images of the 8 natural scenes from Nascimento et al. [8]

Surface reflectance of the 240 patches of the Macbeth color

checker DC (MCCDC) is used for the training, and also for testing

in the optimal LED selection. Sixty-three patches of the MCCDC

have been used as the training dataset; and one hundred and

twenty-two patches remained after omitting the outer surrounding

(a) Region #1 (b) Region #2 (c) Region #3

Figure 5. RGB images of the 3 test regions of the Scream painting

achromatic patches, multiple white patches at the center, and the

glossy patches in the S-column of the DC chart have been used as

the test dataset in the spectral reflectance estimation. The training

patches have been selected using linear distance minimization

method (LDMM) proposed by Pellegri et al. [24].

Experiments and results

The whole experiment comprises of two parts. The first

part of the experiment is the selection of LEDs. The set of

19 LEDs is divided into three groups: 1-7 in the blue region,

8-12 in the green region, and 13-19 in the red region. These

regions are shown in the Figure 3 separated by two dotted lines.

The division is done based on the crossings of the spectral

sensitivity curves of the three channels of the camera. Optimal

combinations of 3 LEDs, one each from these three groups are

selected through exhaustive search as presented above. Using the

training and the test targets from the MCCDC, estimated spectral

reflectance of the test patches are obtained using the linear

regression based spectral estimation method (Equation 2). A set

of LED combination(s) that produces the minimum RMS error

is considered as optimal. The normalized channel sensitivities

(combination of the LEDs and camera sensitivities) of the

resulting 6 and 9 band multispectral imaging systems from the

2-shot and 3-shot versions are shown in Figures 6(a) and 6(b)

respectively.
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(a) 6-band system
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(b) 9-band system

Figure 6. Normalized channel sensitivities of the resulting 6 and 9-band

multispectral systems. The numbers above the spectra identify different LEDs.

From the selected LED combinations, we see that the peaks

of the resulting channel sensitivities are reasonably well spaced

covering more or less the whole visual range. This makes

the system capable of capturing reasonably good information

throughout the visual range.
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The next part of the experiment simulates the proposed

multispectral imaging system built from the Canon 20D camera

and the LED combinations selected by the LED selection

algorithm. The simulated camera responses acquired under the

selected LED combinations are obtained from the hyperspectral

images of the 8 natural scenes and the 3 regions of the Scream

painting. The three camera responses in each pixel from each

shot are obtained through bilinear demosaicking. The process

of bilinear interpolation has been well described by Baone and

Qi [14]. In order to make the simulations more realistic, simulated

random shot noise and quantization noise are introduced in the

camera responses. Barnard et al. [25] investigated the noise in

trichromatic cameras and came to a conclusion that a realistic

level of shot noise in a trichromatic camera is between 1% and

2%. Therefore, the maximum 2% normally distributed Gaussian

noise is introduced as a random shot noise. 12-bit quantization

noise is also introduced by directly quantizing the simulated

responses after the application of the shot noise.

The spectral reflectances of a scene are estimated from the

camera responses using the linear regression method as presented

above in the System Model section, using the MCCDC training

dataset as the training target. The two metric values RMS and

∆E∗

ab are calculated using the estimated spectral reflectance and

the measured spectral reflectance from the hyperspectral images.

The mean of the metric values obtained from the natural and the

painting images, along with the standard deviations are given in

Table 1. For comparative analysis, the results produced by the

3-channel RGB camera, and two state of the art multiplexed LED

illumination based multispectral imaging systems which use a

monochrome camera, and the same number of LEDs as in the

proposed system (6 and 9), are also given. The optimal LEDs for

these systems are selected also through exhaustive search from the

set of 19 LEDs, using the same optimization criteria. The table

also shows the LEDs selected by the LED selection algorithm, for

the later four types of systems.

Table 1: Mean spectral and color estimation errors for the natural and

painting images

Mean Std Mean Std

Natural 0.033 0.019 3.357 2.234

Pain ng 0.020 0.007 3.775 1.971

Average 0.027 0.013 3.566 2.103

Natural 0.025 0.014 1.269 0.758

Pain ng 0.008 0.002 1.684 0.725

Average 0.017 0.008 1.477 0.742

Natural 0.020 0.010 0.970 0.502

Pain ng 0.008 0.003 0.861 0.455

Average 0.014 0.006 0.915 0.479

1 12 14 Natural 0.028 0.015 2.294 1.754

4 8 18 Pain ng 0.013 0.005 2.621 1.706

Average 0.020 0.010 2.457 1.730

1 10 16 Natural 0.025 0.014 1.996 1.570

3 12 19 Pain ng 0.015 0.007 2.358 1.539

7 8 14 Average 0.020 0.011 2.177 1.554

System LEDs Image
RMS ∆E

*
ab

RGB +       

3 x 3 LEDs

RGB + 

D65

Mono +    

6 LEDs 

1, 5, 9, 12, 

14, 18

Mono +    

9 LEDs

1, 3, 6, 7, 10, 

12, 14, 15, 19

RGB +       

2 x 3 LEDs 

The results show that the state of the art multiplexed

LED illumination based 6-band system with the monochrome

camera produces the average (of natural and painting images)

RMS and ∆E∗

ab values of 0.017 and 1.48 respectively. The

performance is improved slightly with the 9-band system, though

not significantly. The proposed system with 6-bands (RGB +

2 × 3 LEDs) produces the average RMS and ∆E∗

ab values of

0.02 and 2.46 respectively. The 9-band system (RGB + 3 × 3

LEDs) produces the corresponding metric values of 0.02 and 2.18,

not so significant improvement from the 6-band system. The

performance of the 3-channel RGB camera, as expected, performs

the worst both in terms of the spectral and the colorimetric

reproductions. We discuss more on the results in the next section.

To illustrate the results, the estimated and the measured

spectral reflectances at the two manually selected pixel locations

on the eight natural images, as obtained with the 6-band

multispectral system are shown in Figure 7. Similarly, Figure 8

shows the spectra at the four different, randomly picked pixel

locations on the three image regions of the Scream painting. We

see that the estimated spectral reflectances are reasonably close

to the measured ones with the natural, and the results of the

estimation is even better with the painting images.
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Figure 7. Reflectance spectra at the two different pixels in the eight natural images.

The pixel locations are shown above the plots.

Discussion

From the experimental results, we see that proposed system

performs significantly better both spectrally and colorimetrically

in the case of both 6-band and 9-band systems, compared

to the traditional RGB camera. Plots of the estimated and

measured spectral reflectance also show very good estimation

of the spectra. However, the performances of both the systems

are slightly lower than the state of the art systems. This is

not unexpected, because unlike the later ones, the proposed

systems require demosaicking step and this introduces some

spatial errors. This plays a big part in increasing the estimation

errors. The objective behind the proposed system is to address

the problems of the state of the arts systems and at the same time
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Figure 8. Reflectance spectra at the four different pixels in the three regions of the

Scream painting.

try to keep the performance comparable and acceptable for many

applications. We used a simple bilinear demosaicking algorithm

in our experiments. Better results can be expected with a more

sophisticated demosaicking algorithm.

The problems with the state of the art systems are that their

design is relatively complex and need more shots to acquire an

image. The proposed system is relatively much simpler and

requires much less number of shots. On top of that the system can

be realized cheaply. These advantages might outweigh the slight

performance reduction, and make it a practical and feasible in

many applications. We consider the performance of the proposed

system (with ∆E∗

ab of less than 3 and RMS of less than 3%)

as promising as it could be good enough in many applications,

including the cultural and heritage area. Many museums still

use high-end digital cameras and color management techniques

to capture the artworks to achieve high quality images. The

proposed system could be used instead to improve the results by

providing information from more than 3 channels.

Several observations can be made from the experimental

results. We can see that the performance is not improved with

the 9-band compared to the 6-band system. The improvement is

not so significant even in the case of monochrome camera based

system. This shows that the increase in the number of bands

not necessarily improve the system performance. This could be

because of the influence of noise which becomes more prominent

as the number of band grows.

Yet another observation we can make is that all the five

systems perform relatively better with the painting images

compared to the natural images, in terms of spectral estimation.

This is because of the use of MCCDC as the training dataset as

it represents more close to the spectra of the painting compared

to the natural images. The performance may not perform that

well in the case of images where spectral curves show strong

swings. More study could be done as a part of the future work

to see the behaviour in such cases. It is important to note that

we should choose an appropriate training dataset which is close

representative of the test data that will be used in an application.

Conclusion

The proposed LED illumination based multispectral imaging

system can acquire multispectral images with a reasonably less

number of shots, compared to the state of the art LED illumination

based systems. It is practical and feasible, since the system can

be built using an off-the-shelf digital camera and color LEDs

that are available in the market. The results from the simulation

experiments on both the natural and painting images show that

the performance of the system is comparable to the state of the

art systems. The system could be useful in many applications, for

instance in the culture and heritage artworks. As a future work,

it would be interesting to realize the system, and do experimental

validation of the results from the simulation.
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