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Abstract
The paramer mismatch-based spectral gamut mapping framework

is an approach which optimizes the spectral reproduction colorimet-

rically for multiple viewing conditions. Unfortunately, due to the

pixelwise nature of this method, almost similar neighboring pixels

might be mapped to completely different colorants which yield dis-

turbing banding artifacts. The previous proposed solution for this

problem adds some noise to the a∗ and b∗ channels of the input im-

ages prior to calculating the separation image. Even though this

procedure solves the problem of banding artifacts, it adversely af-

fects the graininess of the final print. In this paper, we propose an

approach based on both colorimetric and spatial criteria to reduce

banding artifacts of the final print. To our knowledge, the proposed

method is the first attempt of joint spatio-spectral gamut mapping

and separation. It leads to smoother spectral separations by pre-

serving image edges but is still not completely free of artifacts.

Introduction
Reproduction quality may drastically be reduced by limitations

of the printing system particularly by the colorimetric gamut, which

is the set of printable colors for specified viewing conditions (ob-

server, illuminant). Out of gamut colors must be mapped to in-gamut

colors by gamut mapping algorithms [1] commonly with the aim of

minimizing the perceived difference between the original image and

the final print. To expand the printer gamut additional inks are added

to the conventional CMYK ink set. Many multi-channel printers are

available today utilizing, for instance, CMYKRGB inks. A byprod-

uct of using more inks is a higher colorimetric redundancy which

means that multiple colorant combinations may result in the same

or almost the same color for the specified viewing condition. Corre-

sponding reflectances are called metamers or paramers.

This colorimetric redundancy might be utilized to improve

the reproduction for more than the specified viewing condition.

We call such reproductions spectral reproductions even though

perfect spectral matches between original and reproduction are

rather unlikely because of the limited spectral gamut of real printing

systems.

The typical spectral reproduction workflow consists of spectral

gamut mapping, spectral separation, ink limitation and halftoning.

In this paper we, focus on the first two stages of the workflow, i.e.

spectral gamut mapping and separation. More information on ink

limitation or halftoning can be found in Ref. [2, 3].

Spectral separation refers to the computation of colorant com-

binations for reproducing given in-gamut reflectances. This requires

the inversion of a high-dimensional spectral printer model by solv-

ing a constrained optimization problem [4, 5]. Since it is rather un-

likely that an arbitrary spectral reflectance is within the spectral de-

vice gamut, spectral gamut mapping must ensure valid inputs for the

separation method. Such algorithms are much more complex than

conventional gamut mapping methods mainly because they have to

operate within higher dimensional spaces that do not contain dis-

tance measures that correlate well with human perception. Different

approaches have been proposed for specifying and accessing colori-

metric gamut boundaries [6, 7]. Accessing spectral gamut bound-

aries is much more challenging since they are only implicitly given

by the spectral printer model. For the purpose of simplifying the

characterization of spectral gamut boundaries usually some kind of

dimension reduction is used.

For instance, Bakke et al. [8] applied Principal Component

Analysis (PCA) on multi-dimensional spectral data. They used the

convex hull to specify the boundary of the spectral gamut. Spectral

gamut mapping was performed by transforming each out-of-gamut

spectra along a line towards the gamut center.

Another approach was presented by Rosen and Derhak [9].

They introduced LabPQR, a colorimetric-spectral hybrid Interim

Connection Space (ICS). This space consists of three colorimetric

and three spectral dimensions. The latter three dimensions are

defined by the first three principal components determined by PCA

on the metameric black space. The colorimetric gamut can be

specified within the first three dimensions of LabPQR as used for

metameric reproductions. For each CIELAB value in the colori-

metric gamut, a nested gamut represented by the PQR components

reflects the metameric redundancy of the printing system for this

particular CIELAB color. Spectral gamut mapping is performed

in this hybrid space in two stages: colorimetric and spectral. Each

reflectance is converted to LabPQR. In the colorimetric stage,

a traditional colorimetric gamut mapping is performed. For the

resulting in-gamut color the corresponding PQR nested gamut is

calculated. In the spectral stage, a PQR gamut mapping is done

for PQR values outside of the nested gamut. Experiments show

that spectral gamut mapping minimizing PQR differences results

in minimal spectral error. However, this gamut mapping cannot

guarantee minimal colorimetric errors under another than the

specified viewing condition.

While the above mentioned work considers the colorimetric

and spectral stages separately, there is a related spectral gamut

mapping method proposed by Tsutsumi et al. [10] where these two

stages are combined together as a single objective function. In this

approach a final colorant combination is chosen by minimizing a

weighted sum of normalized Euclidian distances in the PQR space

and CIEDE2000 colorimetric differences in CIELAB. Due to the

low-dimensionality of the ICS, spectral gamut mapping can be

combined with spectral separation and encoded by smooth lookup
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tables ensuring an artifact-free reproduction.

Another approach presented by Urban et al. [11] considers a

hierarchical set of application-dependent illuminants sorted from

the most to the least important one. In this approach, the CIELAB

image, rendered for the first and most important illuminant, is

mapped to the colorimetric gamut of the printer utilizing traditional

gamut mapping methods. Also spatial gamut mapping algorithms

may be used in this step (see e.g. [12]). The remaining CIELAB

images, rendered for the other illuminants, are mapped to the

device- and pixel-dependent metamer mismatch gamuts. These

transformations use distance measures (e.g. color-difference

formulas) that correlate much better with human color vision

than spectral metrics. A related approach proposed by Urban

and Berns [13] uses the human color quantization for exploiting

spectral variability to increase colorimetric accuracy. The main

idea is to map the rendered images for the second and subsequent

illuminants to the device- and pixel-dependent paramer mismatch

gamuts instead of metamer mismatch gamuts. This replacement

utilizes the color quantization of the human visual system, i.e.

colors are indistinguishable if their distance is smaller than the

Just-Noticeable-Distance (JND). Considering this property of the

human visual system increases the spectral variability for the

second and subsequent hierarchical mappings and improves the

reproduction under more illuminants.

Employing low-dimensional ICS (e.g. LabPQR) to construct

lookup tables and direct computation using metamer or paramer

mismatch-based frameworks can be considered as the two main

noticeable approaches for spectral gamut mapping. Derhak et al.

[14] compared the LabPQR with the metamer-mismatch framework.

Their results show that LabPQR achieves a better spatial image

quality but the metamer mismatch-based approach shows slightly

smaller error rates.

One shortcoming of the metamer or paramer mismatch-based

spectral gamut mapping is the pixelwise computation that may yield

severe spatial artifacts (banding). In this paper, we combine paramer

mismatch-based spectral gamut mapping with spectral separation in

order to reduce such banding artifacts.

Methodology
Although the paramer mismatch-based spectral gamut mapping

framework proved to be practicable in spectral reproduction, there

are some drawbacks associated with this method. Due to its pixel-

wise nature, similar neighboring pixels might be mapped to com-

pletely different colorant combinations yielding banding artifacts in

the final reproduction (see Figure 1, second row). To avoid such

artifacts Urban and Berns [13] added some noise to the a∗ and b∗

channel of the input CIELAB images prior to the computation of the

separation image. This approach solves the problem of banding arti-

facts but adversely affects the graininess of the final print (see Figure

1, third row).

In order to remove banding artifacts while avoiding larger

graininess of the final print, we must ensure that correlations

between neighboring pixels of the final separation image agree with

the correlation of corresponding pixels within the input images. For

this purpose, we propose a new approach that combines spectral

(a) (b)

Figure 1. Cutout of the METACOW image [15] rendered for illuminant (a)

CIED65 and (b) CIEA. First Row: original image. Second Row: Capture of a

real print resulting from a pixelwise paramer mismatch-based spectral gamut

mapping computation. Third Row: Capture of a real print resulting from a

pixelwise paramer mismatch-based spectral gamut mapping computation after

adding noise to the a∗ and b∗ channels of the input images. See [13].

gamut mapping and separation.

Combining Spectral Gamut Mapping and Separa-
tion

Let R be the spectral image to be reproduced and l1, . . . , lN
are illuminants sorted with respect to their importance within the

underlying application. For example, CIED50 can be chosen for the

first illuminant l1 to achieve ICC-compatible reproductions.

In a first step, the spectral image R is rendered into a CIELAB

image for each of the considered illuminants and specified observer.

The first image (corresponding to the most important illuminant

l1) is mapped into the colorimetric gamut of the device by a

conventional gamut mapping method. The resulting CIELAB

images are denoted by L1, . . . ,LN and are the inputs of our method.

The separation image S is computed from the top-left pixel to

the bottom-right pixel by a row-wise processing shown in Figure

2. For the pixel that is actually processed we consider also the
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pre-processed surrounding direct neighbors. Hence, we consider

M = 5 pixels for computing a colorant combination that is stored at

the actual pixel position in the separation image. M may be smaller

for border pixels which does not affect the procedure described

below. The actual pixel position is denoted by p0 and the considered

neighbor pixel positions by p1, . . . , pM−1.

p1 p2 p3

p4 p0

p1 p2 p3

p4 p0

Figure 2. Non-iterative processing scheme: The separation image is com-

puted by traversing from the top-left to the bottom-right pixel. For each pixel

position p0, a colorant combination is determined by minimizing a cost function

that considers pre-processed surrounding neighbors p1, . . . , p4.

For computing the colorant combination of the separation at

pixel position p0, we solve the following optimization problem

S(p0) = argmin
x∈P(p0)

Fcost(x) (1)

where Fcost is a cost function described below and P(p0) is the

set of parameric (pixel and device dependent) colorant combinations

for the first illuminant. This parameric set is defined as follows

P(p0) = {x ∈ Ω | ∆E [P1(x),L1(p0)]≤ D } (2)

where Ω is the set of all colorant combinations printable by the

printer, ∆E is a color-difference formula (e.g. CIEDE2000), P1(x)
is the spectral printer model prediction for colorant combination x

rendered for the first illuminant l1, L1(p0) is the value at pixel po-

sition p0 of the input CIELAB image L1 and D is a fraction of the

JND. Note that any colorant combination within P(p0) reproduces

the given CIELAB value L1(p0) without any noticeable deviation.

The Cost Function
The cost function is composed of a colorimetric and a spatial

part

Fcost(x) = 1−Fcol(x)Fspatial(x) (3)

where x is a colorant combination, Fcol(x) is the colorimetric, and

Fspatial(x) is the spatial function.

The colorimetric function is defined as follows

Fcol(x) =
N

∏
i=2

exp

(

−
1

σ1
∆E [Pi(x),Li(p0)]

)

(4)

where Pi(x) is the spectral printer model prediction of colorant

combination x rendered for illuminant li, Li(p0) is the CIELAB

value at pixel position p0 of the original CIELAB input image

rendered for illuminant li, and ∆E is a color-difference formula

(e.g. CIEDE2000). The value σ1 > 0 is a weighting parameter.

In the case the given pixel reflectance R(p0) is within the spectral

gamut, the following equation applies Pi(x) = Li(p0), i = 2, . . . ,N

and the colorimetric function is equal to one. For color differences

larger than zero, the function becomes smaller than one but remains

still positive. Please note that Fcol does not depend on the pixel

neighborhood.

In contrast, the spatial function Fspatial depends on the pre-

processed neighboring pixels of the separation image S at pixel po-

sitions p1, . . . , pM−1.

Fspatial(x) = exp

(

−
1

σ2

∥

∥

∥

∥

∥

M−1

∑
j=1

ω(p j)S(p j)− (1−ω(p0))x

∥

∥

∥

∥

∥

2

)

(5)

where the value σ2 > 0 is a weighting parameter, S(p j), j =
1, . . . ,M − 1, are pre-processed colorant combinations of neighbor-

ing pixels, and ω(p j) ≥ 0, j = 0, . . . ,M − 1 are weights satisfying

∑ j ω(p j) = 1. These weights specify the contribution of each of the

considered colorant combinations. The term within the 2-norm is

the difference between x and a weighted average of colorant combi-

nations (including x and S(p j), j = 1, . . . ,M−1). In smooth image

areas of the input CIELAB images the weights must be selected to

be similar. In this case, the weighted average is also similar to an un-

weighted average, i.e. if x is similar to the considered pre-processed

colorant combinations the 2-norm difference becomes small.

In the case the input CIELAB images contain sharp edges, the

contribution of colorant combinations lying on the other side of the

edge (with respect to the actual pixel position) must be small. In

this situation, colorant combinations x very different to the colorant

combinations on the other side of the edge result in small 2-norm

differences as well. In summary, we need weights which ensure an

edge preserving smooth separation image.

The main idea for computing the weights, ω(p j) ≥ 0, j =
0, . . . ,M − 1, is adopted from bilateral filtering used for edge-

preserving image smoothing [16]. Instead of employing spatial dis-

tance and range differences for computing the weights, we apply

color-differences across illuminants. Our weight function employed

in eq. (5) is defined as follows
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ω(p) =
∏

N
i=1 exp

(

− 1
δ

∆E [Li(p0),Li(p)]
)

∑
M−1
j=0 ∏

N
i=1 exp

(

− 1
δ

∆E
[

Li(p0),Li(p j)
]) (6)

where all variables are denoted as before and δ > 0 is a weighting

parameter. The denominator ensures that the weights sum up to one.

Positive parameters σ1 and σ2 are used (see eq. (4) and eq. (5)) to

balance the contribution of Fcol and Fspatial.

Results and Discussion
In the present work, we are not interested in any colorimetric

or spectral accuracy, which would only reflect the accuracy of

the spectral printer model. Furthermore, the separation shall not

depend on the halftoning algorithm. Banding artifacts are already

apparent within the separation image when edges are introduced

in spatially homogeneous areas of the input image. Therefore,

we investigate resulting separation images and compare them

with images computed by the pixelwise paramer-mismatch based

spectral gamut mapping approach [13].

For our experiments, we used an HP Designjet Z3100

printer and the Onyx ProductionHouse RIP. We employ only the

CMYKRGB standard ink set. The printer was characterized as a

combination of 20 four-ink cellular Yule-Nielsen modified Neuge-

bauer (CYNSN) models [17, 18, 19, 20] as used by Urban and

Berns [13] and proposed by Tzeng and Berns [4]. For computing

the parameric sets (see eq. (2)) we divided the hue-linear nearly

perceptually-uniform LAB2000HL color space [21] into cubes with

a side length of approx. 0.4 CIEDE2000. This side length is below

the JND for standard office viewing conditions. We sampled the

colorant space of each of the 20 printer models in steps of approx.

1% resulting in nearly 108 colorant combinations. These colorant

combinations were transformed into LAB2000HL for illuminant

l1 by each printer model. All colorant combinations whose printer

model LAB2000HL predictions fall into a cube were stored in a

separate list allowing a quick access to the corresponding parameric

colorant set. Variables required to compute the cost function Fcost

are directly extracted from the list and from the input CIELAB

images. We parametrized our cost function using σ1 = 3, σ2 = 20,

and δ = 2. These values were adjusted based on visual inspection

of resulting separations which may leave room for improvement.

In future work, image quality measures shall be used as objective

functions to optimize parameter fitting.

For our experiment we used the METACOW image designed

by Fairchild and Johnson [15]. This image is a spectral target

consisting of 24 cows arranged similarly as the patches in a color

checker target. The rear and front of each cow are metamers under

CIED65 with a particularly large color difference under CIEA. To

illustrate the advantages and shortcomings of the proposed method,

it is sufficient to choose only a cutout of the METACOW image.

We used the cow shown in Figure 1 (top row).

Figure 3 shows the separation bands for the black and for

the red ink. The other bands are omitted for the sake of brevity

and because they do not give more information. Compared to

the pixelwise approach, the spatial method shows much smoother

transitions. This is particularly apparent in the background.

Nevertheless, there is still some room for improvement, since not

all stripes could be avoided. Edges are preserved by the spatial

approach. Please note that also the metameric edge between the

rear and the front part of the cow is preserved.

In order to compare the reproduction accuracy of the pixelwise

paramer-mismatch based spectral gamut mapping approach with its

spatial extension, we use ∆E∗
ab color differences for the considered

illuminants. Note that spectral differences (e.g. RMS errors) are

not used as objective functions in neither of the approaches and give

almost no information on the color errors under the considered illu-

minants.

We are particularly interested in how the described spatial mod-

ifications impair colorimetric results. For this, we apply the forward

printer model to both separations (based only on colorimetric crite-

ria and based upon colorimetric and spatial criteria) and computed

color differences between the resulting reproductions and the orig-

inal image. Since the colorimetric gamut mapping strategy is sim-

ilar for both approaches, we present the gains of color deviations

resulting from the spatial modification. These gains are not biased

by any errors resulting from out-of-gamut colors. The table depicts

the maximum and average gains of the ∆E∗
ab color differences for

the investigated cutout of the METACOW image. At least for this

example, the gain of colorimetric errors is negligible.

CIED65 CIEA

max 1.0185 1.0185

avg 0.1193 0.1899

∆E∗
ab color error gains between the colorimetric and the spatially-

enhanced separation.

The required running time for computing and storing the nearly

108 colorant combinations is approximately 15.2 minutes on an

Intel(R)Core(TM)i7− 3820CPU@3.60GHz processor. This com-

putation is required only once after calibrating and characterizing

the printing system. Extracting the control values for the separation

utilizing only the colorimetrical part of the cost function, takes

about 10.7 minutes for the one mega-pixel METACOW image on

the same hardware. Considering the spatial extension, the time gain

is roughly 1.8 minutes. Note that particularly the separation-pooling

is performed by a not performance-optimized single-threaded code.

This leaves much room for decreasing the running time of the

computation.

A shortcoming of the presented method is a smearing effect

apparent on the right side of edges particularly to the right of the

cow. This might result in artifacts within the final print. We as-

sume that spatial separation errors are propagated and accumulated

causing this effect. Distributing such errors over a large spatial area

might reduce their visibility, similarly as in error diffusion halfton-

ing. This shall be addressed in future research.

Conclusions
In this paper, an approach for joint spectral gamut mapping

and separation was proposed that reduces banding artifacts in spec-

tral prints. The method adapts the paramer mismatch-based spec-
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Pixelwise Computing Spatial Computing

K

R

Figure 3. Separation bands of the black (K) and red (R) ink computed by the pixelwise (left) and the spatial (right) approach.

tral gamut mapping framework and considers spatial information

to smooth the separation by preserving edges. For this purpose, a

cost function was introduced which considers colorimetric criteria as

well as local spatial correlations of the input image. The separation

is computed by traversing the image from the top-left to the bottom-

right pixel and selecting a colorant combination for each pixel which

minimizes the cost function. To our knowledge, this is the first at-

tempt of joint spatio-spectral gamut mapping and separation. An

experiment illustrated that the method results in smoother separa-

tions compared to a pixelwise approach. Smearing artifacts suggest

to distribute processing errors over a large image area to minimize

their visibility.
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