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Abstract 
Spectral printing is a well–established part of imaging that can 
boast of a rich body of literature. Nonetheless there has been 
limited commercial uptake of this approach to visual content 
reproduction, in spite of its clear benefits. The aim of the present 
paper is therefore to explore what may lie behind this apparent 
mismatch by looking at how colorimetric (metameric) and spectral 
reproduction compare on an 11–ink printing system. To aid the 
above exploration, the paper proposes a new metric for evaluating 
spectral reproduction in a visually meaningful way and presents 
an analysis of the spectral properties of colorimetric and spectral 
reproductions of a variety of original content including spot colors 
and fine art. 

Introduction  
A key choice when making a print is to decide how it is to relate to 
original content. This can range from the print becoming the first 
‘original’ (e.g., fine art created digitally, where its viewing on a 
display is only an intermediate step of the creative process), via its 
aim being to please (e.g., holiday snaps) to it being as close to a 
facsimile as possible (e.g., fine art reproduction, proofing). In the 
last case, the question arises of how broadly the match needs to 
hold: only under specific viewing conditions or under any (or a 
broad range of) lighting and viewing. Here the former is a 
colorimetric (metameric) reproduction while the latter is a spectral 
one, which has the benefits of mimicking an original more closely 
so that looking at it gives the same visual experience as looking at 
the original would, regardless of where they are viewed and who 
does the viewing. Conversely, the colorimetric case is set up for 
specific lighting (typically D50 or D65) and with a specific viewer 
in mind (usually the 2° CIE Standard Observer) and tends to break 
down under other conditions (hence its ‘metameric’ label). 
As the case looks very strong for spectral reproduction, it is worth 
putting two caveats on the table: first, how accurately a spectral 
match can be achieved and second, how much closer it is to an 
original than the spectral match obtained when colorimetric 
matching is set up. The two questions are related in that both 
spectral and colorimetric reproduction have potentially the same 
spectral variety at their disposal (being a consequence of the inks, 
substrate and their interactions) where the difference between an 
explicit spectral match and the spectral fit of the colorimetrically–
selected match may be significantly smaller than the mismatch of 
either of these to the original reflectance spectrum. In other words, 
a key question is the spectral ‘compatibility’ of the original content 
and printing system’s potential. 
Spectral printing is a topic that can boast of a rich body of 
literature exploring its various aspects, developing its component 
building blocks (e.g., spectral capture, printer models (e.g., Taplin 
1996), gamut mapping, error metrics for minimization) and 
applying it in various ways (e.g., fine art reproduction, proofing – 
including of textiles). Given such a well–established field, it is 
maybe surprising that it has not found more commercial 
application and the aim of the present paper is also to look for 
possible reasons for this fact. 

Two test cases will therefore be considered: fine art reproduction 
and spot color proofing, both of which are, in principle, a very 
good match to the benefits of spectral reproduction. The spectral 
properties of originals and the way they relate to the spectral 
variety accessible using two printing setups will then be evaluated. 
Finally the closest achievable matches will be quantified using an 
evolution of existing multi–illuminant ∆E metrics that aims to be 
more representative of an original–reproduction pair being viewed 
under a broad variety of viewing conditions. 
Before proceeding with an overview of the state of the art, it may 
be worth underlining why the above two aspects of spectral 
characteristics (a physical, ‘device dependent’ feature) and 
perceived difference under a variety of conditions (a 
psychophysical, ‘device independent’ aspect) are considered side 
by side. The reason for this is that image reproduction is concerned 
precisely with the interplay between reproduction capabilities and 
their effects on a viewer – i.e., the device dependent seen in a 
device independent way. 

State of the art of spectral match metrics 
Before turning to the analysis outlined above, two areas of the 
literature will be reviewed: dimensionality reduction (allowing for 
an analysis of spectral ‘compatibility’) and metrics for evaluating 
spectral matches. 
In terms of dimensionality reduction, the basic idea is that the 
underlying variance in spectral data is often of lower 
dimensionality than that of the measured reflectance space (i.e., 
typically having 31D for a 400–700nm range sampled at 10nm 
steps) and that it can therefore be expressed as a weighted 
combination of a smaller number of bases. In other words: 
R=B*w, where R is a 31x1 reflectance vector, B is a 31xn matrix 
containing n bases and w is an nx1 set of weights for combining 
the bases linearly. Then there are numerous choices of how to 
obtain the bases, how many of them to use and what space to use 
this representation in. 
Here Ramanath et al. (2004) present a survey that compares 
Principal Component Analysis (PCA), Independent Component 
Analysis (ICA) and Neural Networks (NN) and also covers 
methods for obtaining sets of all–positive bases (e.g., Non–
negative Matrix Factorization) and their results show similar 
performance for these approaches when using three bases, with 
PCA performing best for their data. Tzeng (1999) introduces an 
important consideration to dimensionality reduction – that the 
choice of space in which bases are computed and where their 
combinations are made plays an important role. He then goes on to 
show that the dimensionality reduction of spectra measured from 
an IT8.7/2 chart (a three–dye photographic print) suggests that six 
bases are needed, while it is known that there are only three 
independent components at play. Tzeng shows how a conversion 
into the Kubelka Munk K/S absorption space before PCA results in 
the same level of variance >99.9% being spanned by only three 
bases. Finally, an important question is, how much variance 
coverage is enough? One approach is to state that 99.9% ought to 
be plenty and then select the number of bases that give the 
necessary coverage. Another is to look for meeting a 1 ∆E 
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threshold under a reference illuminant and choose the number of 
dimensions to achieve it. Finally, a very well reasoned approach is 
to use psychophysics to find how many bases it takes to match 
hyperspectrally–captured scenes. Here Nascimento et al. (2005) 
report that 8 bases were needed for a 55% discrimination threshold 
(corresponding to a mean ∆E*ab of 0.7–0.8, which corresponds to 
a ∆E00 of around 0.4 (Sun and Morovič, 2002)) even though 5 
bases would have been sufficient to get to the unit ∆E threshold. 
Turning to the evaluation of spectral match metrics, Imai et al. 
(2000) and Viggiano (2004) presented two excellent surveys, 
comparing metrics that range from spectral–only methods like 
RMS (the root mean square difference between two reflectance 
spectra) and GFC (Hernández–Andrés et al.’s (2001) goodness of 
fit coefficient), via various weighted version of RMS, e.g., using 
the diagonal of Fairman’s (1987) matrix R derived from tristimulus 
weights for a given illuminant and observer, to metamerism indices 
(which report the color difference under a test illuminant – e.g., A 
– for a match under a reference illuminant – e.g., D65) and even a 
combined spectral and colorimetric metric: CSCM (López–Álvarez 
et al., 2005). The conclusions of both these surveys are that none 
of these metrics can be universally recommended over the others 
and that their choice is a matter of what application it is being used 
for. The basic challenge here is that while RMS expresses the 
physical difference between a pair of spectra, it is not visually 
meaningful. The fact that the starting point is often a mismatch 
already under a reference illuminant rather than a strict match is a 
complication, which means that metamerism indices are often 
applied not directly to an original–reproduction pair, but to one 
that has been ‘corrected’ (e.g., using Fairman’s (1997) method) to 
force a match so that the metameric difference under a test 
illuminant can be expressed. A different approach is then taken by 
Alsam and Hardeberg (2004) and Bastani et al. (2007) who 
consider ∆E statistics under multiple illuminants: 6 in the former 
and 11 in the latter case.  
Given the above approaches to dimensionality reduction and 
spectral match metrics, the following sections will first introduce a 
new alternative to the reflectance or absorption based PCA 
approaches, proceed to make a more explicit comparison between 
original and reproducible spectra, propose a new spectral match 
metric that extends the multi–illuminant methods mentioned 
previously and finally apply them to the example original and print 
conditions. 

Methodology 

Dimensionality analysis in Yule–Nielsen corrected 
spectral reflectance 
While Tzeng’s K/S based analysis is an important step towards 
getting at the fundamental sources of variation in surface color, it 
is an approach that assumes homogeneous mixing of base 
colorants. This assumption is well suited to the spectral analysis of 
paintings or analog photographs, but less well to that of halftone 
prints. Here the basic building blocks are not colorant absorption 
spectra but Neugebauer primaries upon which optical and physical 
dot gain act instead. Hence the most appropriate means of analysis 
is in a Yule-Nielsen corrected (Yule and Nielsen, 1951) spectral 
reflectance space and what can be expected are bases that relate to 
Neugebauer primaries, which in turn can either be predicted from 
colorant K/S spectra. Our method is therefore an extension of 
Tzeng’s approach in that it combines both the subtractive colorant 
mixing of dot overlaps and the additive optical mixing that follows 
it. A prerequisite for this approach though is that is assumes that 

NP relative area coverages can be free varied. While this is not the 
case in colorant space based approaches to color separation and 
printer control, the HANS approach (Morovic et al., 2011) directly 
enables it. Therefore the results of this Yule–Nielsen based 
analysis apply directly to HANS and present an upper limit that is 
likely to exceed what can be obtained using colorant space 
methods. Results for a direct dimensionality-based comparison of 
the original and reproduction data will be reported in the final 
paper. 

MIPE – a new spectral match metric 
A key requirement for evaluating the degree of spectral match is to 
quantify how closely an observer thinks a reproduction matches an 
original under different viewing conditions. Since ∆E metrics best 
predict perceived differences and have units designed to 
correspond to just noticeable differences, results in their terms 
have most direct visual meaning, as opposed to metrics yielding 
(weighted) reflectance differences. Furthermore, a reproduction is 
likely not to be strictly metameric – i.e., there will be non–zero 
differences between an original and a reproduction even under 
reference conditions (if such are even defined when setting up the 
spectral match). Hence a viewer may see a difference even when 
looking at a reproduction under reference conditions. Under other 
than reference conditions there will be a difference too, which is 
not only the increment from what a perfect match under reference 
conditions would deteriorate to (as is the case with metamerism 
index methods mentioned above). In other words, for a metric to 
represent the perceived differences between a pair of surfaces, it 
needs to incorporate the difference present even under reference 
conditions and express how that difference manifests itself under 
as great a variety of conditions as possible. 

 
Figure 1. CIE xy chromaticities of the 173 illuminants (left) and their relative 

spectral power distributions (right). 

In the method proposed here, we will use the ∆E2000 color 
difference equations. Since the results of the metric need to express 
how a reproduction relates to an original under arbitrary, but 
realistic, viewing conditions, we will use a large database of 
illuminants and measured light sources. Our choice is Hordley’s 
(2001) set of 173 spectral power distributions (Figure 1), which 
includes both CIE standard illuminants and a large variety of 
measured natural and artificial light sources. Finally, instead of 
reporting only the worst case match (as in the Bastani et al. 
approach) or full per-illuminant statistics, the ∆Es between original 
and reproduction will be pooled together from across all available 
illuminants. By reporting the median, 95th percentile and maximum 
for a set of corresponding original–reproduction samples (or even 
for a single one across all illuminants), the results will indicate 
how close a match can be expected for an arbitrary, but realistic, 
light source (median), how much this match varies (median – 95th 
percentile difference) and how far apart the two can get at worst 
(maximum).  
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Equation 1 expresses the MIPE metric in mathematical notation, 
where MIPEMED is the median MIPE for a set of n samples viewed 
under 173 light sources, Oi,s is the s-th sample viewed under light 
source i and Ri,s is the corresponding reproduction: 

MIPEMED  median
i1,s1

i173,sn

(∆ E2000(Oi,s, Ri,s )) (1) 

Since this approach starts with a paramer pair (i.e., a pair that even 
under reference conditions have some different and are therefore 
not perfect metamers), considers multiple illuminants and reports 
∆E predictions, it will be referred to as Multi–Illuminant Paramer 
∆E – MIPE. Finally, it is also worth noting that MIPE, like all the 
other metrics discussed in the literature survey, provides color 
difference predictions for individual color patches (or sets of them) 
and that it does not address aspects of image appearance. 

Results 

Test setup 
The dimensionality and spectral match analysis methods described 
above will be applied to two printing setups (Table 1). Note that 
the two pigmented, aqueous inks 10–ink sets used in a HP 
Designjet Z3100 printer differ by one ink only, where the first uses 
a matte black (k) and the second a glossy one (K). The remaining 
nine inks are the same in both cases. 
Table 1: Printing systems evaluated. 

Label Characteristics 
Matte Inks: cMmYnNkRGB 

Substrate: Hahnemühle Smooth Fine Art 
Glossy Inks: cMmYnNKRGB 

Substrate: HP Premium Instant–dry Gloss 
Photo  

 
Figure 2. Regular samples of printer gamuts printed and measured on HP 

Z3100 using matte (left) and glossy (right) substrates, spanning the gamut of 

all possible 10-ink combinations. 

Measurements of the printer’s output were made using an XRite i1 
spectrophotometer, taking 31 measurements from 400 nm to 700 
nm at 10 nm intervals using a 45°/0° geometry. 

 
Figure 3. CIE xy chromaticity diagrams of the spot color (left) and fine-art 

(right) data sets. 

The following two sets of source spectra (Table 2) were then 
compared with the above printing systems. For illustrative 
purposes they are plotted in terms of their CIE xy chromaticities 
under CIE D50 (Figure 3). 
Table 2: Original data sets. 

Label Characteristics 
Spot color PANTONE patches on three substrates: 

uncoated, matte and coated with 1224 
patches per substrate (3672 samples in 
total, resulting from mixing the Pantone 

system’s 15 base inks) 
Fine art Measurements taken from fine art originals 

(1168 samples) 

Dimensionality Reduction 
Given a set of reflectances, the proportion of the first N singular 
values of its covariance matrix determines the % spectral variance 
represented by an N-dimensional basis. However, this doesn’t 
intuitively convey the degree to which a reflectance will match or 
mismatch an original reference under a variety of viewing 
conditions. For example, a basis of three dimensions can represent 
>99.8% variance of a data set (see Table 3 below), yet this 
corresponds to a 95th %tile MIPE of 5 ∆E00 and a maximum of 
over 24 ∆E00. The following two tables show the relationship of 
this strict way of looking at dimensionality (shown in the second 
column), compared to the MIPE metric statistics (shown in the 3rd 
to 5th column) proposed here for the glossy data set (Table 3) and 
the matte data set (Table 4). Comparisons are performed in a Yule-
Nielsen corrected reflectances space with an empirically 
determined wavelength independent factor of 4. 
 
Table 3: Dimensionality analysis of glossy data set, comparing 
% variance coverage and the MIPE metric for N=1 to 10 for the 
glossy data sets. 

dim % var. MIPE 
med. 95th %tile max 

1 96.60 14.3 40.7 53.7 
2 98.69 6.4 33.5 51.6 
3 99.83 2.0 4.9 24.4 
4 99.92 1.3 3.2 17.6 
5 99.95 1.0 2.4 11.3 
6 99.97 0.5 1.3 5.9 
7 99.99 0.1 0.4 3.1 
8 100.0 0.1 0.3 2.4 
9 100.0 0.1 0.2 1.4 

10 100.0 0.0 0.1 1.4 
The comparison above shows that considering strictly numerical 
metrics, such as the % variance coverage is limited in the context 
of determining the dimensionality of a data set with a view towards 
spectral reproduction. The MIPE metric instead is expressed in a 
domain that can be easily interpreted since it represents ∆E00 
statistics across a large variety of illuminants, and moreover relates 
directly to the space of target conditions for a spectral match, 
namely a variety of illuminants under which a reproduction might 
be viewed. 
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Table 4: Dimensionality analysis of glossy data set, comparing 
% variance coverage and the MIPE metric for N=1 to 10 for the 
matte data sets. 

dim % var. MIPE 
med. 95th %tile max 

1 98.3 9.6 32.2 47.5 
2 99.4 5.1 29.8 45.5 
3 99.9 1.2 3.7 14.3 
4 100.0 0.7 2.3 12.0 
5 100.0 0.6 2.2 12.0 
6 100.0 0.3 0.8 3.5 
7 100.0 0.2 0.5 2.3 
8 100.0 0.1 0.3 2.0 
9 100.0 0.0 0.1 1.5 

10 100.0 0.0 0.1 0.7 

Metameric vs Spectral Reproduction Accuracy 
Since any reproduction can be evaluated both in spectral and 
colorimetric terms and the choice of approach essentially translates 
to different ways of selecting from among the possible outputs of a 
printing system, the spectral match of a conventional color 
reproduction will be looked at first, before proceeding to 
evaluating spectrally determined reproductions. 
The spectral match between originals and their colorimetric 
(metameric) reproductions, as obtained using the color 
reproduction mechanisms of ICC profiles is shown in Table 5. 
Note that a color separation based on Morovic’s (2007) maximum 
gamut approach and an ICC profile computed for the printer’s 
device RGB interface built on top of the above separation were 
used for the colorimetric reproduction. 
Table 5: MIPE spectral accuracy of colorimetric reproductions. 

MIPE Median 95th Maximum 
Spot color – matte 1.6 5.7 15.4 
Spot color – glossy 1.7 3.6 13.6 
Fine art – matte 4.6 7.5 13.4 
Fine art – glossy 2.0 4.6 12.7 

 
The median MIPE metric for this data is always below 5 ∆E and 
often below 2.5 ∆E. We shall consider these two values as a rough 
rule-of-thumb threshold for a mismatch being respectively 
objectionable and just noticeable for complex imagery. From the 
results in Table 5 we cannot say that differences would not be 
seen, but that across all possible illuminants considered in this 
metric there will only be few under which few of the surfaces – 
typically a combined < 5% of the cases, with the exception of fine 
art reproductions on matte media – will differ sufficiently for it to 
be objectionable. Still, if those surfaces are large uniform areas and 
the illuminants ones under which reproductions are viewed, this is 
non–negligible and it is worth exploring whether a better match 
could be had. Finally, it is also worth bearing in mind that the 
printer used here had a level of print–to–print consistency, with a 
median of 0.5 ∆E00 and a maximum of 1.2 ∆E00. Consequently 
any MIPE differences below these levels should not be considered 
significant. 
In summary, the above results represent the spectral reproduction 
accuracy of a system tuned to result in a metameric match under 
CIE D50. For comparison, the colorimetric reproduction accuracy 
under these canonical conditions is shown in Table 6. 
 
 

Table 6: Color accuracy of colorimetric reproduction. 

∆E00 under D50 Median 95th Maximum 
Spot color – matte 1.5 5.6 14.1 
Spot color – glossy 1.5 3.1 10.0 
Fine art – matte 4.5 7.3 13.1 
Fine art – glossy 1.8 4.1 7.5 
What we observe is that the ∆E00 statistics for the canonical 
conditions (CIE D50) are of the same order of magnitude as those 
taken across the full set of illuminants used in the MIPE metric in 
Table 5 earlier. According to this result, the match of original vs. 
reproduction under any illuminant will be approximately as good 
as under D50. 
Thus far we have simply examined current colorimetric 
(metameric) reproduction accuracy from a spectral point of view.  
Next, we characterize the spectral domains of the printer-media 
combinations to explore the potential benefit of controlling print 
spectrally. Here we take advantage of the flexibility of a HANS 
pipeline that enables print control via convex combinations of a 
system’s Neugebauer Primaries which in turn allows the 
application of PCA in a suitably Yule-Nielsen corrected spectral 
reflectance space. 
To characterize the spectral domain of a printing system, two data 
sets have been printed and measured in each case. The first is a 
common profiling target that samples the device’s RGB interface 
regularly (utilizing the color separation that the printer or RIP 
uses), while the second is a chart comprising the set of Neugebauer 
Primaries of the printer (independent of color separation) at the 
maximum area coverage permitted by the substrate’s ink-limit. 
Figure 4 shows the CIE xy chromaticities of this Neugebauer chart. 

 
Figure 4. Neugebauer Primary printer characterization charts on matte (left), 

and glossy (right) substrates. 

To derive a PCA basis for both systems, we use both the RGB 
sampling data as well as the NP charts. The former consists of 
uniform samples, albeit not utilizing the full spectral variation the 
printer is capable of, which in turn is expressed in the latter made 
up of the Neugebauer Primaries, albeit highly non-uniform in color 
space. Figure 5 shows the first 6 PCA bases for both substrates. 
These bases describe the respective domains of reproducible 
reflectances on each of the systems. Assuming the ability to 
control the printing system in the spectral domain (directly enabled 
by HANS, but also possible to some extent using other methods) 
we next look at the best–case spectral matches. 
For a given, arbitrary reference reflectance (the original to be 
reproduced), we solve for the closest reflectance within the domain 
of an ND PCA basis of a printing system and then check if it is 
inside the convex hull of the printing system. If it is outside the 
convex hull we map it to the closest point on the ND hull, which 
gives the closest printable reflectance within the basis. Note that 
such gamut mapping does not minimize the MIPE metric but 
Euclidean distance in the PCA basis, hence there may be other 
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reflectances within the basis that reduce MIPE error further still. 
Figure 6 illustrates the spectral gamut and the data that is being 
reproduced (also projected to the same basis) for the case of a 3D 
PCA domain for each of the three substrates. Performing this form 
of gamut mapping guarantees that we only consider reflectances 
that, under ideal conditions, can be printed. 

 

 
Figure 5. First six Principal Components of printed and measured data sets in 

Yule-Nielsen corrected reflectance space on matte (top) and glossy (bottom) 

substrates. (Note: the PCAs have been shifted by 0.4 in order to attribute 

pseudo-color to reflectances that otherwise would have negative values). 

In the above plots there are 337 and 483 out of 3372 spot color 
reflectances out-of-spectral-gamut for the matte and glossy 
substrates respectively. Note that while the matte substrate results 
in the smaller gamut and the glossy in the larger, a 3D PCA 
describes the system better in the matte case. Hence for a low 
dimensional basis, the higher dimensional the system, the more 
samples are out of gamut. 
Looking at spectral accuracy using MIPE results in the values 
shown in Tables 7 and 8 where both overall statistics and those of 
reflectances strictly inside the gamut are reported. The latter results 
are independent of gamut mapping and only rely on the ability of a 
printing system to represent the same spectral variety as that of the 
original source data while the former relate better to the degree of 

visual agreement that can be expected across the various original-
reproduction combination. 

 

 
Figure 6. Spectral gamuts (in a 3D PCA basis with 2D projections shown) for 

matte (top) and glossy (bottom) substrates shown as tessellated convex hulls 

and the full set of spot colors (points) mapped to the respective 3D Yule-

Nielsen Reflectance PCA domains. Colors represent colorimetry of the original 

reflectances (under D50 for sRGB visualization). 

Table 7: Spectral accuracy of best spectral match to spot color 
originals within ND PCA basis of printer’s domain (brackets 
show % of within-gamut samples) using MIPE (brackets show 
metric for within-gamut samples only). 

 PCA 
(in-gamut %) 

MIPE (in-gamut) 
Median 95th Maximum 

matte 3D (87%) 2.6 (2.4) 6.8 (6.3) 20.0 (20.0) 
4D (68%) 2.2 (1.8) 6.1 (4.8) 14.8 (12.2) 
5D (54%) 2.1 (1.6) 6.0 (4.6) 14.4 (12.2) 
6D (39%) 1.4 (0.7) 5.7 (2.9) 14.4 (6.7) 

glossy 3D (89%) 2.3 (2.2) 5.9 (5.8) 21.7 (21.7) 
4D (74%) 1.9 (1.8) 4.7 (4.5) 16.9 (9.7) 
5D (62%) 1.6 (1.3) 4.3 (3.4) 16.7 (9.4) 
6D (49%) 1.0 (0.5) 3.2 (2.2) 14.4 (8.6) 
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Table 8: Spectral accuracy of best spectral match to fine art 
originals within ND PCA basis of printer’s domain (brackets 
show % of within-gamut samples) using MIPE (brackets show 
metric for within-gamut samples only). 

 PCA 
(in-gamut %)  

MIPE (in-gamut) 
Median 95th Maximum 

matte 3D (90%) 2.1 (1.9) 5.6 (5.2) 19.4 (11.6) 
4D (86%) 1.5 (1.3) 4.7 (4.0) 18.1 (11.0) 
5D (62%) 1.3 (1.0) 4.5 (3.9) 18.0 (11.1) 
6D (48%) 0.7 (0.5) 3.9 (1.9) 18.6 (9.0) 

glossy 3D (99%) 2.3 (2.3) 5.8 (5.7) 11.9 (11.9) 
4D (94%) 1.5 (1.4) 4.8 (4.4) 12.5 (10.5) 
5D (80%) 1.1 (1.0) 3.8 (3.2) 12.1 (10.4) 
6D (62%) 0.6 (0.5) 2.3 (1.3) 10.7 (5.0) 

Note that spectral gamut coverage for the above data sets decreases 
with an increasing dimension of the printer-system basis. This is 
contrast with the PCA analysis of a single data set where the more 
basis functions are used, the better they characterize the data set. 
While more spectral variation can be represented with an 
increasing number of bases, the fact that the reference reflectance 
data differs in the space it occupies becomes more apparent as the 
higher order PCA bases differ more between the printing system 
and the data to be represented. Conceptually this is also analogous 
to the difference between a chromaticity diagram and a full 3D 
color space – while many colors may be within a chromaticity 
gamut boundary, when luminance is taken into account, not all of 
them turn out to be actually in gamut. Also note that there may be 
cases where an increased N also increases the maximum MIPE 
error, which again may seem counter intuitive, but is due to the 
fact that the analysis is performed in a Yule-Nielsen corrected 
reflectance space (as described earlier), while the MIPE metric is 
evaluated on reflectances. 

Conclusions 
Spectral printing is an exciting alternative to colorimetric 
(metameric) reproduction, but an analysis of typical spectral 
content shows a mixed bag of spectral versus colorimetric 
selection performance gains. While in some cases (e.g., fine art 
reproduction on glossy substrate) the benefits of determining 
reproduction properties spectrally brings a 2x improvement (of 2.3 
versus 4.6 ∆E in the spectral versus colorimetric cases, comparing 
the 95th percentiles from Tables 5 and 8), in other cases (e.g., spot 
colors on matte substrate) the results are essentially the same and 
going to the trouble of driving a printer spectrally would be 
unnecessary. 
A likely reason for the good spectral performance of colorimetric 
reproductions in some cases is the fact that printers, inks and 
substrates are designed to ensure that prints are color constant and 
have low metamerism versus relevant references. This, coupled 
with the relative smoothness and color constancy of ‘natural’ 
reflectances, means that colorimetric reproduction already tends to 
spectra that are not far off actual original ones and in the cases 
where it ends up being a weak match it is often because of spectral 
gamut limitations that also constrain spectrally-determined 
reproduction. 
Current systems are therefore well tuned for metameric 
reproduction and do a good job even in terms of the spectral 
domain. Systems designed specifically for spectral reproduction 
may be able to improve accuracy, facilitate the coveted ability to 
print exact metamers that match under one light perfectly and 
mismatch with a large error under other illuminants and perform 

even better for security applications like those presented by Hersch 
(2011). Overall it looks like the future of spectral printing lies in 
application to specific, niche cases and not in a full, spectral 
workflow succeeding the current colorimetric one. 
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