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Abstract
The concept of color space has  come to be an unquestioned three-
dimensional representation of color stimuli, or color  appearance, 
intended to simplify the relationships among physically measurable 
attributes of light, mathematical formulae, and human sensations 
and perceptions. The notion of three-dimensional mathematical 
spaces as adjuncts for color is often helpful, but perhaps also 
misleading at times. Color appearance models requiring five or six 
dimensions to represent color appearance illustrate some of  the 
limitations of historic spaces. This paper poses the question of 
whether color appearance would be better represented by 
independent appearance scales with no requirement that they be 
related as a higher-dimensional space. In other words, is color 
better represented by six one-dimensional color scales  than one or 
two three-dimensional color spaces. A framework for implementing 
such appearance scales  is  described and one implementation is 
presented along with discussion of the ramifications for  color 
difference metrics.

Introduction
 Color scientists and engineers have become accustomed to the 
fundamental concept of color space to the point that  the concept 
itself goes unquestioned. Much like most accept the fact that the 
earth is nearly spherical, those in the color-related fields proceed 
merrily along without a doubt that color space is three 
dimensional. Further, some continue to seek the holy grail of a 
three-dimensional color space in which perceived color differences 
can be expressed as uniform Euclidean distances despite an 
apparent lack of psychophysical evidence that such a space might 
exist. Perhaps it is time to, once again, step back and ask the 
question of whether the concept of a Euclidean distance metric in 
three dimensions really makes sense for describing color, even 
approximately.

Perhaps some insight into appropriate descriptions of color 
appearance can be gained from a cursory examination of the other 
human senses.[1,2] Our perception of taste has at least five distinct 
dimensions, sweetness, bitterness, sourness, saltiness, and umami, 
and seldom does anyone speak of changes in taste perceptions as a 
Euclidean difference space. Similarly  our sense of smell is served 
by  something on the order of 1000 different receptor types. Some 
have tried  to reduce the dimensionality to approximately six 
including flowery, foul, fruity, spicy, burnt, and resinous. Our sense 
of hearing is actually spectral (plus intensity) in  terms familiar to 
color scientists as humans are able to detect frequencies within 
sounds  (no aural metamerism) and the relative intensities of each 
frequency. Finally our sense of touch might well be too complex to 
even attempt to summarize in a sentence or two. None of the 
perceptions arising from any of these senses are commonly 
expressed in terms of multi-dimensional spaces with Euclidean (or 
similar) difference metrics. Given these similarities in our other 

senses, why should we think color is different? Is it the relatively 
low dimensionality? Is it the seemingly simple perceptual 
relationships such as color opponency?  Is it  the nature of additive 
color mixing?  Additive color mixture under photopic conditions 
provides ample evidence for trichromacy, the three-dimensional 
nature of color matching/mixture. Adding Grassmann’s  laws 
allows expression of color matches in various sets of primaries via 
simple 3x3 linear transformations analogous to a change of basis in 
a three-dimensional, linear space (where Euclidean distances mean 
something mathematically). Perhaps it  is this  property  of color 
matching, which is not a direct representation of perception or 
appearance, that  leads to an almost irresistible next step to start 
expressing color matches  in three-dimensional Euclidean spaces. 
And then, apparently without clear justification, the concept is 
carried forward in attempts to express appearances and differences 
in  similar three-dimensional Euclidean spaces such as the CIELAB 
color space. Perhaps those attempts were always as  doomed as any 
explorers who might have set out to “circumnavigate” a flat earth.

Color science is not devoid of examples typically described as  
color spaces  that are actually descriptions of color perception one 
dimension at  a time.[3] For example, the Munsell  system, despite 
its common embodiments, was derived as a system of three 
independent perceptual dimensions, hue, value, and chroma. 
Similarly, Guth’s ATD model of visual perception was typically 
described in terms of independent dimensions, although the 
temptation to plot some of them together for some examples 
proved irresistible. Likewise, color appearance models such as 
CIECAM02 were developed with independent predictors of the  
six perceptual dimensions of brightness, lightness, colorfulness, 
saturation, chroma, and hue. This was somewhat compromised by 
requests for rectangular color space dimensions which appeared as 
CIECAM97s evolved to CIECAM02. However it should be noted 
that cylindrical representations of the appearance spaces were 
common even before the requests for rectangular coordinates. 
Lastly, the NCS system provides a useful  example of hue being 
treated separately from whiteness-blackness and chromaticness. 
And while NCS whiteness-blackness and chromaticness are plotted 
in  two-dimensional  trilinear form, the dimensions are largely 
independent since the anchor of maximal chromaticness 
appropriately varies from hue to hue.

All of this insight  leads to the hypothesis that perhaps color space 
is  actually a one-dimensional space, rather than a three-
dimensional space, and that Euclidean  distance metrics might 
indeed be successful in such a space. Of course, color appearance 
cannot be properly described  in a single one-dimensional space. 
Instead six of them are required. There are three fundamental 
appearance attributes for related colors, lightness, saturation, and 
hue. Combined with information about absolute luminance, 
colorfulness and brightness  can be derived from these and are 
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important and useful  appearance attributes. Lastly, chroma can be 
derived from lightness and saturation if desired as an alternative 
relative colorfulness metric. Thus, color is rightfully and fully 
described with six one-dimensional appearance spaces (or scales), 
four of which are fundamental for related colors and two of which 
are derived from the fundamental scales. This paper provides some 
detail of the conceptual framework of a color model made up of 
one-dimensional spaces and an implementation of that framework  
for future application and investigation. Note: One-dimensional 
“spaces” are more commonly referred to as “scales” in color 
science, thus the term “scale” is used preferentially for the 
remainder of the paper.

Conceptual Framework
A set of color appearance scales (or dimensions, or spaces) 
following these principles has been  derived and  an  implementation 
is  presented in the next section. This section provides the general 
framework that could be easily adapted to different specific 
implementations of the concept. The first step is to  apply a 
chromatic adaptation  model  to compute corresponding colors for 
reference viewing conditions (e.g. D65, 315 cd/m2). Then the IPT 
model, derived specifically for accurate hue representations, is 
used to compute a hue angle (h) and then a hue composition (H) 
can be computed  based on NCS unique hues. For the defined hue, 
saturation (S) is computed using the classical formula for 
excitation purity applied along lines of constant h in the u’v’ 
chromaticity diagram. For that  chromaticity, the luminance for zero 
gray content, G0, is defined as the reference for lightness (L) 
computations that follow a power function with offset model found  
to  perform well in recent research for high-dynamic-range 
lightness-brightness scaling. The remaining dimensions  are then 
derived from L and S along with luminance information. 
Brightness (B) is  lightness (L) scaled by a factor derived from the 
classic work of Stevens and Stevens that illustrated terminal 
brightness as a function of adapting luminance. The derived scales 
are colorfulness (C), which is simply saturation (S) scaled by 
brightness (B), and chroma (Ch) which is saturation (S) times 
lightness (L).

This type of formulation allows  accurate description of color 
appearance for lights and objects across a variety of adaptation 
conditions and for low- or high-dynamic-range scenes. To the 
degree that each perceptual scale is accurate, differences on each of 
the dimensions should be easily  calculated and, as long as the 
temptation to combine those differences into a single Euclidean 
distance metric is resisted, quite effective results can be obtained. 
The next section steps through a proposed implementation in 
detail.

Implementation
Fairchild,[4] at ISCC/IS&T/SID meeting on color spaces, outlined 
a methodology for computing the set of three fundamental 
appearance attributes of hue, saturation, and lightness for related 
colors from which the attributes of brightness and colorfulness can 
be derived as a function of the absolute luminance along with 
chroma. As the hue-linearized space IPT, based in opponent color 
theory, is  considered exceptionally uniform in hue, the hue scale 
(h) is  computed  as  a simple hue angle using the IPT model.[5] The 

required inputs for the IPT hue angle computation are the CIE 
tristimulus values in XYZ for the corresponding colors in  CIE 
Illuminant D65. A chromatic adaptation transform is required to 
obtain corresponding colors for Illuminant D65 if the stimuli of 
interest are viewed under a different state of adaptation. The 
CAT02 transformation imbedded in the CIECAM02 color 
appearance model is recommended with a simple von Kries 
transformation on cone fundamentals a second choice. If 
luminance information is available and impacted by the selected 
chromatic adaptation transformation, then transformation to a 
white-point luminance of cd/m2 is  recommended. Hue composition 
(H) can be obtained by recognizing that the NCS unique hues  fall, 
on  average at hue angles of 27.4, 89.8, 162.2, 231.3 degrees for 
red, yellow, green, and blue respectively. Hue composition is 
computed simply as percentages between these four anchor hues as 
done in other color appearance models.

Figure 1. NCS unique hues plotted in IPT to illustrate the definition of hue (h) 
and hue composition (H).

Saturation (S) is computed in the classical way from excitation 
purity at the computed IPT hue in the u’v’ chromaticity diagram. A 
slight modification is made in the distances used in the 
computation however. Saturation is computed  as the ratio  of the 
distance from the white point  (D65) to the stimulus in question to 
the distance from the white point (D65) to the spectrum locus 
stimulus with the same hue angle (h) as the stimulus in question. In 
cases where IPT constant hue predictions fall on straight lines in 
the u’v’  diagram, this  computation  is  identical  with  the traditional 
excitation purity computation. In  cases where constant hue 
contours would be curved in u’v’  there are small differences in the 
calculation. This is illustrated in Fig. 2 and Eq. 1.

Maximum color saturation occurs at the locus of pure color 
computed in a u’v’ chromaticity diagram by cascading the spectra 
of CIE Illuminant  D65 with the 2º Observer and each of the 
monochromatic stimuli at every integral nanometer from 300 to 
830 nanometers of the visible spectrum. A lookup table (LUT) in 
u’v’  as  a function of IPT hue was  then constructed in one degree 
increments from the corresponding IPT hue values  computed on 
the locus of pure color. Figure 2 illustrates  samples of the resulting 
locus of pure color in a u’v’ chromaticity diagram annotated with 
IPT hue angle. Saturation S was then computed according to Eq. 1.
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Figure 2. Saturation in a u’v’ chromaticity diagram annotated with IPT hue of a 
random sample from each of the twenty-four (24) NCS Aim Hues.

     

� 

S =
′ u − ′ u n( )2

+ ′ v − ′ v n( )2

′ u L − ′ u n( )2
+ ′ v L − ′ v n( )2

            (1)

In this computation, u’v’  are the chromaticities of the stimulus, 
un’vn’  those of D65 diffuse white, and uL’vL’ at the spectrum locus 
for the same hue angle from the LUT of the chromaticities of pure 
color in IPT hue. Figure 2 illustrates  both the sample color 
randomly sampled from each of the twenty-four Natural Color 
System aim hues and the pure color at that same IPT hue. For each 
hue, vectors are shown as a solid line for the spectrum locus and as 
dotted lines for the sample color.

Lightness is computed from luminance for each color relative to 
the corresponding luminance at Evan’s G0 [6] from the 
relationships given by Nayatani [7]. G0 defines the luminance for 
each saturation at which stimuli of higher luminance appear self 
luminous and stimuli of lower luminance appear to have gray 
content (or appear like object colors). Thus the G0 luminance 
provides an appropriate reference for perceived lightness of object 
colors that  accounts  for the Helmholtz-Kohlrausch effect and 
discrepancies between photopic luminance predictions and 
heterochromatic brightness matches.

Recently, Chen et al.[8] showed that lightness could be scaled both 
above and below diffuse white and that the perceptual results were 
well predicted by a lightness function of the form given in Eq. 2. 
Equation 2 defines the lightness  scale as  a power function with an 
offset term and its general form is illustrated in Fig. 3.

       

� 

L = 0.98Yg
1
2.3 + 0.02       (2)

In Eq. 2, Yg is the luminance of the color relative to the luminance 
YG0 at G0 and its chromaticity. YG0 is given by finding relative 
luminance of the NCS color with minimum NCS blackness and the 
same chromaticities as the sample in question. The minimum value 

of NCS blackness is zero where grayness is said to be at G0.

Figure 3. Log Lightness (L) as a function of sample log luminance relative to 
G0 luminance for the same hue (h) and saturation (S)

This was accomplished for the value of the NCS blackness 
(swartz) derived from the chromaticities u’v’  of the sample color, 
according to a method given by Heckaman and Fairchild [9] with 
basis in Nayatani [7] and the regression technique prescribed by 
Derrefeldt and Sahlin [10] from conversion data between NCS 
units of blackness and chromaticness and CIE tristimulus values 
taken from Bencuya [11] as illustrated in Fig. 4. Figure 5 illustrates 
the “tent” of the relative luminance of G0 over the u’v’ 
chromaticity diagram.

Figure 4. NCS blackness S as a function of CIELAB Lightness and Chroma for 
the NCS Aim hue B30G. Blue circles are computed from Bencuya [8] 
measured tristimulus values and the red crosses regressed according to 
Derrefeldt and Sahlin [7].

Brightness (Q) is computed as a scaled version of lightness (L). 
The scalar depends on the absolute luminance level and light 
adaptation to that level. This  relationship has been described nicely 
by  both Stevens and Stevens [12] and Evans [13] based on 
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Marshall and Talbot.[14] In this implementation the terminal 
brightness locus of Stevens and Stevens is  used to  define the 
brightness scalar. (An alternative would be to base it on the FL 
function in  CIECAM02 which serves a similar purpose.) The 
terminal brightness locus is the perceived brightness of a stimulus 

 Figure 5. The “tent” of the relative luminance of  in a u’v’ chromaticity 
diagram.

when an observer is adapted to the luminance of the stimulus itself. 
In other words, it defines how bright white appears as a function of 
adapting luminance. The brightness function is given by Eq. 3.

       

� 

Q = Qtbl L      (3)

Figure 6. The terminal brightness locus as a function of adapting luminance as 
fitted to the Stevens and Stevens results.

Qtbl the terminal  brightness locus where “  … the level of sensation 
reached when the eye comes into full  equilibrium with  the 
luminance it is  viewing.” Qtbl is computed as  shown in Eq. 4 which 
was derived from the brightness-luminance functions published by 
Stevens and Stevens. Fig. 6 illustrates the fitted terminal brightness 
locus 
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Qtbl = 0.60 log10(YW +1)[ ]0.65
+ 0.061!  (4)

where YW is  the absolute luminance of diffuse white in cd/m2. Qtbl 
is  defined to be 1.0  at an adapting luminance of 100 cd/m2. Fig. 7 
illustrates brightness as a function of lightness for differing diffuse 
white luminance levels.

Figure 7. Brightness (Q) as a function of Lightness (L) and diffuse white 
luminance level (adaptation).

Thus far, scales have been defined for hue (h,H), saturation (S), 
lightness (L), and brightness (Q). These can be considered the most 
fundamental color appearance attributes for both related (HLS) and 
unrelated (HQS) colors. Saturation is considered a more 
fundamental appearance attribute than the more commonly used 
chroma and the rarely used colorfulness for a variety of reasons. 
Among these is that  it is a fundamental property of materials 
(where chroma depends on the material  and the illumination and 
therefore varies for three-dimensional objects made of a single 
material) and that it more directly relates  to the physical stimulus 
(being constant as the stimulus radiance or relative radiance is 
scaled). Hunt  [15] has provided an useful overview of the nature of 
saturation relative to other appearance attributes. That said, the 
final two color appearance scales of chroma and colorfulness can 
be useful at times and are easily derived from the scales described 
above. Chroma (C) is simply defined as saturation (S) scaled by 
the sample lightness (L), C = LS. Likewise colorfulness  (M) is 
simply saturation (S) scaled by brightness (Q), M = QS.

To illustrate the relationships between the various chromatic scales 
and the performance of the scales  proposed in this paper, several 
computations were made for a series of red samples from the NCS 
system. The samples are of constant hue (R) and follow an 
increasing range of chromaticness while possessing zero whiteness 
as illustrated in Fig. 8.

Fig. 9 illustrates the brightness  of the samples as a function of 
adapting luminance. It can be seen that brightness increases by 
about a factor of four while luminance increases  by a factor of a 
thousand, an illustration of the power of light adaptation.
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Figure 8. NCS samples of hue R, whiteness zero, and various chromaticness 
used in the following examples.

Figure 9. Predicted brightness of the NCS samples for various adapting 
luminance levels.

Figure 10 shows predicted  chroma and saturation for the samples 
at a single luminance level. Saturation increases with NCS 
chromaticness for these samples since they are not of constant 
chromaticity, but rather approach the spectrum locus as 
chromaticness increases. Chroma has lower values  than saturation 
since the lightness of all these samples is less  than 1.0 (as is true 
for any sample of luminance less than  the G0 luminance) and  since 
the lightness decreases with luminance the chroma becomes a 
smaller fraction of saturation at the lower chromaticness levels.

Figure 11, similar to Fig. 9, illustrates colorfulness for the NCS 
samples for various adapting luminance levels. One can see clearly 
that colorfulness increases with chromaticness at any given 
adaptation level (it is directly analogous with saturation) and that 
the overall colorfulness increases with adapting luminance (again 
following the definition of colorfulness and increasing by about a 
factor of four with a thousand-fold change in luminance.

Figure 10. Predicted saturation and chroma of the NCS samples at a single 
adaptation luminance.

Figure 11. Predicted colorfulness of the NCS samples for various adapting 
luminance levels.

Finally, the reverse process, going from lightness, saturation, and 
hue to, say CIE XYZ, is somewhat more difficult as IPT hue is 
non-linear in CIE XYZ or u’v’. Hence, optimization using the 
Simplex method [16] is needed to minimize the the difference 
between the sample hue and the computed hue for trial  values of 
u’v’. In addition the search is constrained such that the saturation 
values are maintained to match the sample saturation. Once the 
minimization is complete, the inverted u’v’  values have been 
obtained and a transformation back to XYZ can be completed. :

Color Differences
Color differences are traditionally computed as the Euclidean 
distance between the coordinates of the two colors in some color 
space (e.g. the CIELAB ∆E*ab). It  has long been recognized that 
such difference metrics do not  correlate well with color difference 
perceptions, even when the dimensions of the color space seem to 
correlate well  with appearance. As such, a number of weighted 
color difference equations (e.g. CIEDE2000) have been derived in 
attempts to create a more perceptually uniform color difference 
metric. These have met with some success, but at the expense of 
losing any simple relationship with the base color space.
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Alternatively, users of color difference formulae are often 
encouraged to avoid the temptations of “mononumerosis” provided 
by  ∆E metrics and instead examine the individual components of 
color difference (e.g. ∆L*, ∆C* and ∆H* in CIELAB). That is 
precisely the way color differences should be treated in a 
comprehensive color appearance model made up of separate one-
dimensional appearance scales. In other words, since no 
geometrical relationship between the appearance scales is claimed 
or suggested, none should be assumed in the computation of color 
differences. Instead, only differences in the individual scales 
should  be computed. It is likely that such differences can correlate 
very well with  perceived color differences as either simple 
difference computations or with simple uni-dimensional 
weightings  to account for differences in scales between 
suprathreshold appearance differences and overall appearance 
scales. For tolerances to be derived for individual colors, nothing 
more than simple differences in the appearance scales is required 
(this is true of any reasonable color appearance dimensions). Such 
independent treatment of dimensions and their interactions can also 
easily be extended to  appearance dimensions that  are traditionally 
not considered  part of color differences such as gloss, texture, 
noise, flicker, etc.

Future Directions and Conclusions
This paper describes a new concept in the description of color 
appearance, the use of unidimensional appearance scales instead of 
multidimensional color spaces, and an initial  implementation of the 
concept. 

Color stimuli are described with four fundamental appearance 
scales: hue (h,H), saturation (S), lightness (L), and brightness (Q). 
Additionally, the two remaining color appearance attributes, 
colorfulness (M) and chroma (C) are defined as simple functions of 
saturation, lightness, and brightness. It is hoped that  such a 
description of color appearance might help free researchers from 
the restraints sometimes imposed by assumed multidimensional 
spaces to allow accurate description of appearance, useful 
definition of color tolerances, and novel ways to encode and 
process color in imaging, and other, applications.

Further work is clearly needed to refine the definitions of the 
scales, test  them with  available and new psychophysical data, 
explore the interrelationships between the scales, test  and define 
appropriate difference measures, and streamline the computational 
implementation and inversion if possible. To promote such 
explorations, the authors are making Matlab code for these scales 
freely available at <www.cis.rit.edu/fairchild/CAM.html> for 
others to experiment with.
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