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Abstract
In 2009 Logvinenko introduced a new object colour space

that utilises representation of non-luminous surfaces as re-

flectance spectra of a rectangular shape i.e. a reflectance spec-

trum takes two values 1+α
2 or 1−α

2 for 0 ≤ α ≤ 1 with two tran-

sitions at λ1 and λ2. The calculation of Logvinenko colour co-

ordinates for a large set of reflectance spectra (or tristimulous

values) is time consuming, even despite a more recent more effi-

cient algorithm of Godau and Funt. In this paper, we propose two

approximate, but fast solutions to finding the Logvinenko coordi-

nates (ADL) that exploit the combinatorial properties of rectan-

gular spectra. The proposed algorithm takes around 0.02s to cal-

culate the ADL coordinates for 1600 surface database as opposed

to earlier implementation that reported 90s. Both algorithms are

approximate, but the precision should be acceptable for most of

the applications as the calculated mean, median, 95 percentile

and max ∆E Lab errors were respectively 0.3, 0.2, 0.7 and 1.6.

Introduction
Colours of all reflecting objects under certain fixed illumina-

tion are contained within a closed convex volume called object-

colour solid [11]. In Figure 1, we plot the volume of all reflect-

ing objects under illuminant D65 in the CIE 1931 colour space

(XYZ) [11]. Unlike the points in the interior of the object-colour

solid that represent different metameric classes where each class

corresponds to infinitely many reflectance spectra, each point on

the object-colour solid surface has only one corresponding re-

flectance spectrum. These ‘surface’ spectra are called optimal and

have the property of being functions of zeros and ones with two

transitions only [10,11]. They are also the spectra that for a given

chromaticity have the greatest reflectivity.

The uniqueness property of the object colour surface (sen-

sor responses mapping to unique) spectra is useful as it teaches

that a trichromatic response can be mapped uniquely to a surface

reflectance. Moreover, this reflectance has the simple ‘two transi-

tion’ form. This uniqueness property allows one to map an XYZ

measured under one illuminant exactly to the corresponding XYZ

under a second light.

For interior points of the object colour solid there is a set (a

metamer set [4,11]) of different reflectances that integrate to form

a single tristimuli. Yet we could still map responses across lights

if we could systematically recover plausible reflectance spectra

from tristimulus measurements. We would simply compute the

desired reflectance (for a tristimulus under the first light) and

then integrate this reflectance with the second target light. Fin-

layson and Morovic followed this approach in what they called

”Metamer Constrained Colour Correction” [3]. Of course, the in-

teresting question that arises is ”which reflectance to choose from

the metamer set?”.

Logvinenko defines a colour atlas to be a set of reflectance

spectra which, for any illuminant (with power through the visible

spectrum), map bijectively to the corresponding tristmulus values

[6]. Each tristimulus in the object colour solid corresponds to a

single atlas reflectance and vice versa.

Figure 1. Object colour solid as evaluated for the CIE 1931 CMFs and the

illuminant D65. Every 4nm sampling.

Logvinenko colour atlas
The Logvinenko colour atlas comprises spectra fulfilling the

following equation:

x(λ ) = (1−α)x0.5(λ )+αxopt (λ ) (1)

where xopt(λ ) is the optimal spectrum and x0.5(λ ) = 0.5. The

variable α denotes the chromatic amplitude of the optimal

metamer and is beween 0 and 1. As can be seen in Figure 2, α

signifies the degree to which the optimal spectrum xopt is mixed

with the grey spectrum x0.5.

The Logvinenko colour coordinates (ADL) are three param-

eters, one having been defined as α and the other two describing

the optimal spectrum xopt . These two are spectral width and cen-

tral wavelength denoted as:

δ = (λmax −λmin)−|λ1 −λ2| (2)

and

λ =

{

λ1 +
δ
2 if λ1 +

δ
2 < λmax

λ2 −
δ
2 else

(3)
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Figure 2. Logvinenko Type I rectangular spectrum (non-optimal as α 6= 1).

where λmin and λmax denote the ends of the visible spectrum.

Thus, there are two alternative parametrisation of ADL coordi-

nates: the first comprises spectral width and central wavelength;

and the second transition wavelengths λ1 and λ2.

There are two types of optimal spectra xopt(λ ;λ1,λ2): Type

I are those that are 1 for λ1 < λ < λ2 and zero everywhere else

(see Figure 2) and Type II are those that are 0 for λ2 < λ < λ1 and

one everywhere else. This notation follows Logvinenko’s where

λ1 < λ2 for Type I and λ2 < λ1 for Type II spectra.

The sensor responses to the Logvinenko metamer under illu-

minant I(λ ) can be written as

ϕi(α,λ1,λ2) =
∫ λmax

λmin

(

(1−α)x0.5(λ )+αxopt (λ ;λ1,λ2)
)

si(λ )I(λ )dλ (4)

where si(λ ) are the three sensor sensitivities.

Figure 3. A cross-section of the object-colour solid in the Y plane. ~ϕ0.5

denotes a vector of tristimulus values calculated from x0.5 spectrum and ~ϕopt

from xopt

This paper deals with the inverse calculation that is given

sensor responses ψi we want to find the triplet (α,λ1,λ2) such

that ϕi(α,λ1,λ2) = ψi

Godau and Funt’s approach to Metamer cal-
culation

Godau and Funt approached the calculation of ADL coordi-

nates as an optimisation problem [5]. The intuition of their ap-

proach is as follows (also see Figure 3). Suppose ~ϕ is the tar-

get tristimuli. We of course know the response to 50% grey (the

centre of the object-colour solid) and denote it ~ϕ0.5. We can cal-

culate the vector joining these tristimuli ~ϕ −~ϕ0.5. Clearly, if we

could find the correct optimal colour on the object colour bound-

ary, denoted ~ϕ1,λ1,λ2
then the vector joining this to the object-

colour solid centre is in the same direction. We write this vector

as ~ϕ1,λ1,λ2
−~ϕ0.5. Remembering that the cosine of the angle be-

tween two vectors can be calculated as (~a.~b)/(|~a||~b|) we seek λ1

and λ2 such that we minimise:

E(α,λ1,λ2) = arccos
(~ϕ −~ϕ0.5).(~ϕ1,λ1,λ2

−~ϕ0.5)

|~ϕ −~ϕ0.5||~ϕ1,λ1,λ2
−~ϕ0.5|

(5)

Once the optimisation is finished and hence ~ϕ1,λ1,λ2
is

known, the calculation of the remaining parameter α is straight-

forward.

α =
|~ϕ −~ϕ0.5|

|~ϕ1,λ1,λ2
−~ϕ0.5|

(6)

Below we explain their method in more detail. First, (λ1,λ2)
- the starting points for optimisation are found using the follow-

ing interpolation procedure. The grey-centred sensor responses

(~ϕ−~ϕ0.5) are converted to spherical coordinates (Θ,φ) i.e. vector

direction is encoded by the elevation and azimuth angles. Then,

the authors look for a function F : (Θ,φ)→ (λ1,λ2). They create

only one interpolation function for Type I spectra.

Once the interpolation function is in place, we can start

searching for ADL coordinates of the input sensor responses ~ϕ .

Since Type I and Type II reflectances are symmetric with respect

to grey then a complementary (Type II) sensor responses can be

written as

~ϕ II = ~ϕ0.5 − (~ϕ −~ϕ0.5) (7)

Both ~ϕ II and ~ϕ are then converted to spherical coordinates

(Θ,φ). Then, the aforementioned interpolation function (trained

for the Type I reflectance spectra) is used for both ~ϕ II and ~ϕ . Fi-

nally (λ1,λ2) are found according to the following equation:

(λ1,λ2) =

{

(λ I
1,λ

I
2) if E(1,λ I

1,λ
I
2)≤ E(1,λ II

1 ,λ II
2 )

(λ II
1 ,λ II

2 ) else
(8)

That is if the angular error E is less or equal for ~ϕ than for

~ϕ II, we consider the result of the interpolation a Type I spectrum

and if it is greater a Type II spectrum.

The authors report that their interpolation yields very good

results which often do not require further refinement using opti-

misation. For interpolation, the authors used the Matlab TriScat-

terInt and for optimisation another third party toolbox [9].
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With regard to optimisation, the repeated calculations of sen-

sor responses ~ϕ(1,λ1,λ2) are necessary. The authors note that

these can be calculated efficiently as

~ϕ1,λ1,λ2
=

{

~ϕ(λ2)−~ϕ(λ1) if λ1 ≤ λ2

~ϕ(λmax)− (~ϕ(λ1)−~ϕ(λ2)) if λ1 > λ2
(9)

where ~ϕ(λ ) denotes the antiderivative of the integrand from

Equation 4 (for α = 1). This antiderivative can be pre-calculated

with a sufficiently small step, for example 0.1nm.

Godau and Funt’s algorithm calculates a very precise esti-

mate of the optimal metamer. The authors reported the maximum

angular error 0.001◦ . The execution time was reported to be 90

seconds for the dataset of 1600 spectra [8]. This is still a sig-

nificant cost (a 1 Mega pixel image would take over 15 hours to

compute the Logvinenko Metamers).

Fast Combinatorial Metamer Calculation
We note that Equation 4 can be rewritten as

~ϕ(α,λ1,λ2) = ~ϕ0.5 −α~ϕ0.5 +α~ϕopt (10)

and equate it to the given sensor responses ~ψ

~ϕ0.5 +α
(

~ϕopt −~ϕ0.5

)

= ~ψ (11)

We denote the grey-centred responses ~ϕopt −~ϕ0.5 and ~ψ −

~ϕ0.5 as ~ξopt and ~ξ respectively and rewrite Equation 11.

α~ξopt = ~ξ (12)

Our method avoids expensive interpolation and optimisation

and exploits the fact that one can generate the set of say k Logvi-

nenko optimal metamers xk
opt and pre-calculate their grey-centred

sensor responses ~ξ k
opt .

Next, we evaluate α k times for all the candidate optimal

metamers minimising the distance between ~ξ and αk
~ξ k

opt that is:

minimise
αk

∣

∣

∣

~ξ −αk
~ξ k

opt

∣

∣

∣
(13)

The solution to this minimisation is trivial and can be found

as follows. We know that the orthogonal projection of ~ξ onto

the line in the direction of ~ξ k
opt minimises objective in Equation

13. Let θ be the angle between ~ξ and ~ξ k
opt . Then, the length of

the projection of vector ~ξ onto the line in the direction of ~ξ k
opt

equals |~ξ |cos(θ ). On the other hand the length of this projection

is αk|
~ξ k

opt |. Thus,

αk|
~ξ k

opt |= |~ξ |cos(θ ) (14)

after expanding cos(θ ) and rearranging we obtain the solution:

αk =
~ξ k

opt .
~ξ

|~ξ k
opt |

2
(15)

Figure 4. Calculation of the approximate Logvinenko coordinates.

The optimal metamer ϕ(1,λ1,λ2) which has the smallest

distance

∣

∣

∣

~ξ −α~ξopt

∣

∣

∣
among all k optimal metamers together with

its optimal α give us the approximate solution to our problem -

the triplet (α,λ1,λ2). See Figure 4 for geometrical intuition.

In order to perform the above calculations one has to sam-

ple the surface of the object-colour solid. This can be done by

generating the sequences of zeros and ones corresponding to the

optimal reflectance spectra. A reasonable starting point could be

1nm sampling and the visible spectrum range of 380-780nm. In

this case, we have 401 sampling points in the visible spectrum and

consequently 401× 402/2 − 1 = 80,600 Type I optimal spectra

and the same number of Type II optimal spectra giving us a total

of 161,200 sampling points on the surface of the object-colour

solid. In general if p is the number of sampling points in the

visible spectrum, there will be (p× (p+1)/2−1))×2 sampling

points on the object-colour solid. In Figure 1, we can see the

object colour solid sampled every 4nm from 405-650nm at 3904

points.

Unlike previous methods, our algorithm is simple and can be

implemented in a few lines of Matlab. Moreover, the code can

be easily vectorised removing the loop over all candidate optimal

metamers and given the memory constraints also the loop over all

sensor responses for which we are calculating Logvinenko coor-

dinates.

As we shall see in the next section our method delivers good

results. Yet, the reader might wonder whether we are guilty of

legerdemain. We solve for α in Equation 15 yet, there is no

constraint that α is between 0 and 1. Yet, to recover a Logvi-

nenko Metamer this constraint must be enforced. Conceptually,

we could enforce this interval requirement simply using the tool

of quadratic programming. However, this optimisation is much

more onerously expensive than the method we present. It is al-

ways much easier to carry out an unconstrained optimisation than

a constrained one.

In fact (with one small caveat) it is straightforward to prove

that the least-squares solution we seek will never have α outside

the desired range. To see this suppose that ~v and ~w respectively

denote the true RGB for which we seek a Logvinenko metamer

and the RGB that the metamer our method returns actually gen-

erates. Let us now run a second optimisation where now we seek

the best metamer for ~w. We know in this case we must get the

result we just computed. And, further this metamer integrates to

~w without error.
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sampling ∆E ∆θ timings [s]

mean med 95 pt. max mean max

10nm, 380-780 5.3 3.6 15 42 1.8 14 0.1

5nm, 380-780 2.6 1.8 7.3 24 0.9 6.5 0.4

4nm, 380-780 2.1 1.5 5.7 24 0.8 8.0 0.6

3nm, 380-780 1.5 1.0 4.4 15 0.6 5.1 1.2

2nm, 380-780 1.0 0.8 2.8 12 0.4 3.9 2.5

1nm, 380-780 0.5 0.4 1.4 5.3 0.2 1.9 10.5

1nm, 405-650 0.5 0.4 1.5 4.8 0.2 1.8 3.8

Table 1. ∆E and angular errors for the recovered Logvinenko metamers under D65 illuminant.

Suppose that the metamer we found has α outside the range

[0,1]. That is, that our method returns a spectrum that is larger

than 1 or has negative values. Now let us ‘mix’ our RGB with

50% grey and carry out the same mixing with the grey spectrum

and our ‘out of interval’ metamer. At some point as we mix more

grey into our metamer the reflectance spectrum lies on the [0,1]

interval. We have just created an ‘optimal colour’ for an interior

point of the object colour solid. Yet, we know that all optimal

colours map to points on the surface of the colour solid. We have

arrived at a circumstance that cannot occur. That is the original

metamer we calculated must have alpha in the [0,1] range. We do

not need to constrain α . The nature of the formalism of Logvi-

nenko metamers, almost always, allows the simple least squares

solution of Equation 15 to be used directly.

The above reasoning accounts for all typical Logvinenko

metameric calculations. However, if our RGB is very near the

surface of the object colour solid then we could have α out of

range. In all our experiments with thousands of surfaces and hun-

dreds of lights this never happened. Real reflectances are far from

the shape described by the optimal colour formula.

Results
Following [6] and [5], we used the University of Eastern Fin-

land spectral database of 1600 glossy Munsell samples [8]. Ac-

cording to Godau and Funt, their algorithm takes about 90 seconds

to execute to recover Logvinenko Metamers for the 1600 RGBs

with a maximum angular error of 0.001◦. They also reported that

the earlier original algorithm of Logvinenko took more than a day

to calculate the ADL coordinates for the same dataset.

We tested our algorithm using different wavelength sampling

resolutions, which have the obvious impact on the results (see Ta-

ble 1). We also varied the limits of the integration - λmin and

λmax. Following Logvinenko’s advice [6] we shortened the spec-

trum range from 380-780nm to 405-650nm, which did not have

the detrimental effect on the results and reduced significantly the

number of optimal spectra (from 161,200 to 60,760). All the

results reported were obtained for spectra under D65. We also

recorded errors for illuminant A, but there was not any significant

difference.

As expected, the results in Table 1 show that the precision

of our algorithm cannot match the earlier described optimisation

method. In the following section, we propose a further improve-

ment that drastically decreases the execution time and also allows

for a further increase in accuracy.

Fast Metamer Calculation Using K-d Tree
Another possibility for improving the algorithm execution

time and/or precision would be a look-up table that would link

the chromaticity coordinate of the input colour ~ψ to the index of

optimal spectra in the ‘vicinity’ of that colour, whereby signifi-

cantly reducing the number of candidate optimal spectra needed

to be considered for each input. The implementation of this ap-

proach could be based on another good idea in the Godau and

Funt’s paper, which is characterising optimal spectra by the az-

imuth and elevation angles of their corresponding tristimulus val-

ues. Figure 5 shows the distribution of Type I and Type II spectra

in these spherical coordinates. The figure was created using 5nm

sampling from 405-650nm. We used illuminant D65 and the CIE

1931 CMFs.

We pursued this idea and performed the following experi-

ment using the k-d tree structures [1]. For a fixed illumination

we calculated azimuth and elevation for each of our large set of

optimal colour XYZs (in the same way as Godau and Funt). The

XYZs themselves are calculated by integrating our optimal spec-

tra with the illumination of interest (D65) and the colour matching

curves (CIE 1931). Thus, we can visualise all our optimal colours

as points on the cartesian grid (as in Fig. 5). To find the Logvi-

nenko metamer for a given query XYZ, it suffices to calculate its

azimuth and elevation coordinates and then search, using an ef-

ficient data structure like a k-d tree, for local neighbours in our

optimal azimuth and elevation point set. Intuitively a small num-

ber of neighbours will suffice to find the correct optimal spectrum

with respect to which we can find the Logvinenko metamer.

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

φ

Θ

Figure 5. Distribution of Type I (black) and Type II (blue) spectra in spherical

coordinates.

Results
In Table 2 we show the errors and timings corresponding to

the identical experiments carried out in the earlier section, with
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the difference being that this time we employed a k-d tree. The

implementation of the kd-tree came from the Matlab Statistical

Toolbox. For each of the 1600 XYZ queries, we obtained a single

nearest neighbour and calculated the errors analogically as in the

earlier section. Note that we give here the timings for both build-

ing and searching the k-d tree. The relevant figure for obvious

reasons is the latter. As expected, the query timings are a small

fraction of earlier figures from Table 1 and for the first time will

allow us to calculate the Logvinenko metamers for large images

in a matter of seconds. The errors for the finest resolution are

relatively small and should not have much effect in most of the

applications. Arguably, the precision we achieve is likely all that

we can reasonably hope for. All real camera systems record RGBs

that are corrupted by noise. It is unlikely that the RGB record will

be known to a grater accuracy than 1 Delta E (the precision to

which we calculate a vast majority of Logvinenko metamers).

Moreover, we performed a further simulation involving a hy-

perspectral image captured in our lab. The image (see Figure 6)

was captured using a Specim VNIR hyperspectral camera (400nm

- 1000nm with a 1nm resolution). The illuminant was the D65

metamer produced by the Gamma Scientific RS-5B LED illumi-

nator [7]. The image was clipped to 490 by 350 pixels and 405-

650nm range. Next, we calculated the Logvinenko metamers for

all the pixels in the image using the kd-tree method. For this im-

age size (171,500 pixels), the execution time was approximately

2s. Next, we rendered both the original hyperspectral image and

the Logvinenko metamer image under two illuminants: A and F12

(fluorescent). The resulting images can be seen in Figures 7-10. It

can be clearly seen that the Logvinenko metamer image rendered

under illuminant A is very similar to the original (Figures 7-8),

whereas this is not the case with the other pair. As to F12 illu-

minant, we can see that many patches were rendered with a large

error and in certain areas of the image a high level of noise was

introduced (see the red pepper and the adjacent red patch). The

intuition behind the latter effect can be gained from Fig. 9. The

figure contains the plots of two Logvinenko metamers from two

adjacent pixels in the ‘noisy’ red patch. As one can expect, both

metamers are the most reflective in the long end of the spectrum.

However, we can also see that the F12 peak at 610nm coincides

with high reflectance only in one of them, resulting in the two

very different pixel values.

Figure 6. Original hyperspectral image captured under D65 illuminant.

Figure 7. Original image rendered under illuminant A.

Figure 8. Logvinenko Metamer image rendered under illuminant A.

Figure 9. Original image rendered under illuminant F12.

Figure 10. Logvinenko Metamer image rendered under illuminant F12.
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sampling ∆E ∆θ timings [s]

mean med 95 pt. max mean max build query

1nm, 405-650 0.5 0.4 1.5 4.3 0.2 1.8 0.2 0.01

0.5nm, 405-650 0.3 0.2 0.7 1.6 0.1 0.9 0.7 0.02

Table 2. ∆E and angular errors for the recovered Logvinenko metamers under D65 illuminant using the k-d tree indexing. The

timings given are for the building and querying of the k-d tree.

400 450 500 550 600 650
0
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0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Illuminant F12

Logvinienko Met. 1

Logvinienko Met. 2

Figure 11. Logvinenko Metemers calculated for two adjacent pixels from

the ‘noisy’ red patch in Figure 10 and plotted together with the illuminant F12

spectrum.

Discussion
Of course, we are in effect exploiting a similar observation

to Godau and Funt. We sample the set of optimal spectra and then

find the α terms as a second step. But, while we stand on their

shoulders for inspiration, our approach is different. Our experi-

ments show we do not need to interpolate between local optimal

surfaces if we generate enough local surfaces in the first place.

We are the first to concede that we need to generate many opti-

mal surfaces (> 200,000 for the finest sampling and the best ∆E

result). Yet, this simple combinatorial approach has the advan-

tage that finding α is a simple closed form process (which uses

only simple arithmetic operations). It is remarkable that our brute

force solution is so much faster than the Godau and Funt’s ap-

proach. And, the explanation for this is the underlying simple

arithmetic form of our calculations. By making the final indexing

step comprising the usage of the k-d tree, we made the Logvi-

nenko metamer calculation, for the first time, a real practical tool

useful for image analysis.

The calculations were performed on Dell laptop with Intel i7

processor. We did not use any parallel computation functionalities

which are available in Matlab. In particular one could envisage

that using general processing GPU could significantly speed up

the calculations of the ADL coordinates (for our first method).

Finally, we remark that Finlayson et al adopted a similar

combinatorial approach as we use here for the problem for finding

the optimal sensor basis (a linear combination of the cones) which

supports simple von Kries type adaptation [2]. In this work, sen-

sors (linear combinations of the cones) are represented by a dis-

crete number of points on a sphere. Candidate sharp sensors are

triplets of this discrete sensor sets. Finlayson et al showed that

they could, using the simplest of combinatorial optimisation, gen-

erate all possible candidate linear transforms of the cones and test

their adequacy as a vehicle for von Kries adaptation. Like here,

the solution to the optimisation was simple enough to be searched

by a simple brute force combinatorial search. We predict that

there are many other problems in the colour field that can be tack-

led in this combinatorial way.

Conclusions
In this paper, we proposed a simple, yet very efficient way

of calculating Logvinenko coordinates for large databases. The

method produces approximate results which should be sufficient

for majority of applications. The method is efficient enough to be

applied in general photography using desktop software.
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Leuchtkraft. Annalen der Physik, 367(15):603–622, 1920.

[11] G. Wyszecki and W.S. Styles. Color Science: Concepts and

Methods, Quantative Data and Formulae. John Wiley and

Sons, NY, 1982.

20th Color and Imaging Conference Final Program and Proceedings 269




