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Abstract 
It has been observed that magnification of a digital image 

results in a decrease in perceived contrast in various imaging 
applications. This study is aimed to quantify the loss in our 
contrast perception under varied sizes of field of view first and a 
local contrast enhancement method is proposed to compensate for 
the loss by pre-emphasizing selective image frequency components. 
The pre-emphasis gains are determined adaptively to the size of 
field of view and can also be adjusted by parameters in order to 
accentuate the overall amount of enhancement. In consequence, 
improved local contrast and clarity in magnified images could be 
achieved and undesirable halo and random noise boost-up 
artifacts typically shown in conventional methods could be 
attenuated.  

Introduction 
Smart TV is thought of as an important keyword in recent 

television market. Basically, it can be connected through internet-
protocol so various internet contents, such as down-scaled 
YouTube and video on demand (VOD), can be serviced; thus 
lower resolution images relative to broadcasting standards, e.g. 
Rec. 709, [1] happens to be magnified to fit the whole screen of a 
TV. Displaying a magnified digital image in a larger screen or 
viewing field causes a decrease in angular resolution and the 
resulting image tends to be perceptually blurred and less 
contrasting. [2-4] For example, when a low resolution VOD is 
magnified to the full screen, it appears not just blurred but also 
foggy or murky. (Note: the perceived contrast decrease has also 
been significant in developing vision correction imaging systems. 
[3-4]) The decrease in perceived contrast of such a magnified 
image might be due to a combination of image blur and of sub-
sampling the larger range of contrasts in the original. [2] There is a 
considerable amount of efforts to quantify the image blur and 
restore the lost high frequency components during magnification. 
[5-6] However, perceived contrast decrease has not been 
understood very well. 

This study is aimed to model the adaptive characteristics of the 
human visual system (HVS) by measuring contrast sensitivity 
under varied sizes of field of view (FOV) first. A local contrast 
enhancement method, which compensates for the effects of FOV 
on our contrast perception mechanism, is proposed. Specifically, 
spatial luminance contrast sensitivity function (CSF) is used as a 
guide for determination of the adaptive pre-emphasis gain in the 
proposed method. CSF can be defined in both luminance and 
chromatic channels but only luminance CSF is studied in the 
current work. 

The CSF represents the amount of minimum contrast at each 
spatial frequency that is necessary for a visual system to 
distinguish a sinusoidal grating or Gabor patterns over a range of 

spatial frequencies from a uniform field. It is believed that CSF is 
in fact the envelope of the sensitivity functions for collections of 
neutral channels that subserve the detection and discrimination of 
spatial patterns. [7-8] Various computational models of luminance 
CSF have been published. For instance, Barten has developed two 
models: one that is relatively complex and physiologically inspired 
and the other that is simpler and empirically fitted to 
psychophysical data. [9] Such CSF models have been adopted in a 
number of works in the field of image processing in order to figure 
out spatial nature of the HVS and evaluate and enhance images by 
counteracting the effects. [10-13] 

The Proposed Method 
Figure 1 illustrates a schematic diagram of the proposed 

method based upon the pre-emphasis model [12] that intends to 
neutralize the change in contrast sensitivity of the HVS under 
varied sizes of FOV. An input image can be pre-emphasized by 
enhancing certain spatial frequency components before displaying 
the image. The pre-emphasis gains are determined adaptively to 
the size of FOV. 

 

 
Figure 1. The schematic diagram based upon the pre-emphasis model [12] 

Modeling the Change in Contrast Sensitivity 
The simpler version of Barten’ CSF [9] is one of the widely 

used CSF models which is a function of spatial frequency and 
mean luminance of the stimulus as shown in Equation 1. It is also 
dependent on the size of FOV affecting the level of maximum 
spatial frequency for a given imaging system. 
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 Experimental 
In order to verify the CSF estimation by Barten’s model [9] 

discussed in Equation 1, a set of simple psychophysical 
experiments was carried out. A sinusoidal grating pattern, of 
which contrast modulation gradually varies (See Figure 4 for 
illustration), is displayed on a 55-inc. Samsung C8000 liquid 
crystal display. Its spatial resolution reaches up to 1920 × 1080 
pixels. Along the vertical axis of the screen, contrast becomes the 
highest in the bottom and lowest in the top of the pattern. This 
sinusoidal grating pattern (Q) was produced by means of the 
product of a non-linear gradient function along the vertical axis 
(M) and a one-dimensional sinusoidal function of spatial 
frequency across the horizontal axis (F). In practice, those 
functions can be discretely sampled and expressed by 

Q = MFT (7) 
where FT denotes the transpose of F. 
 

 
Figure 4. Example of sinusoidal grating pattern 

Contrast thresholds were measured at 7 spatial frequencies - 2, 
3, 4, 5, 6, 7, and 8 cpd – by a 25-year old male observer with 5 
repetitions. (Note: the observer is a graduate student in imaging 
background and authors of this paper were not included.) The 

observer was required to identify vertical positions of the 
sinusoidal pattern when the contrast became just distinguishable 
[16] under varied viewing distances: 1, 2, and 3 meters. Note that 
the surround was set to be dark. Contrast was computed using 
Michelson contrast, denoted as CM (See Equation 8), and was 
converted into a sensitivity unit that is the reciprocal of threshold. 

MinMax

MinMax
M LL

LL
C

+
−

=  (8) 

where L is luminance of a given pixel in an input image and 
maxima and minima are taken over the vertical position of the 
sinusoidal grating pattern. 

Results and Discussion 

Verifying the Estimation of FOV effects on CSF 
In Figure 5, the psychophysically measured contrast 

sensitivity data points are depicted with the corresponding CSF 
model estimations. Since the data rely upon a single observer with 
5 repetitions, they are not perfectly fitted as discrepancies in 8 cpd 
can be observed; however their central trends corresponded in 
general.  
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Figure 5. Measured contrast sensitivity vs. model estimation [9] 
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Figure 3. (a) Original, (b) the Laplacian, and the proposed gain maps when (c)  α = 0.75, (d)  α = 1.00, and (e)  α = 1.25.  As α value increases, each pixel’s gain 
is increased so that the overall amount of contrast enhancement can be accentuated. However, the Laplacian produces gains in strong edges and background 

textures and may introduce halo and random noise. 
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