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Abstract
Even though there is still room for improvement, recent percep-

tual image-difference measures show a prediction performance

that makes them interesting to be used as objective functions for

optimizing image processing algorithms. In this paper, we use a

color enhanced modification of the Structural Similarity (SSIM)

index for optimizing gamut mapping. An iterative algorithm is

proposed that minimizes this measure for a given reference im-

age subject to in-gamut images. Since distortions within remote

image regions contribute independently to the measure a descent

direction can be specified locally. The step-length is chosen to be

a fraction of the just-noticeable-distance ensuring a decrease of

the measure. Results show that the proposed approach preserves

contrast and structural information of reference images. Some

artifacts suggest modifications of the employed image-difference

measure.

Introduction
Every color-reproduction workflow incorporates a color gamut

mapping transformation to account for the limited ability of out-

put devices to reproduce colors. A common objective of a gamut

mapping transformation is to minimize the perceived difference

between the original image and the reproduction.

To avoid artifacts, such as color banding, usually more than

the non-reproducible colors have to be modified. In the early stage

of gamut mapping research pixel-wise transformations have been

investigated. A good overview of such gamut mapping methods

is given by Morovic et al. [1]. In order to preserve local image

contrasts, spatial gamut mapping has become of increasing inter-

est in recent years [2, 3, 4, 5, 6]. An independent comparison of

selected spatial gamut mapping methods can be found in [7].

Nearly all of these methods work within perceptual color

spaces (e.g., hue linearized CIELAB or IPT color space [8]) but

are based on heuristics (e.g., preserving hue is more important

than preserving chroma). Calculating the gamut mapping oper-

ator by minimizing the perceptual difference to the original is

rarely addressed in literature. Nakauchi et al. [9] proposed a

method that minimizes a color image-difference measure which

is very similar to the S-CIELAB-based image difference. Kim-

mel et al. [10] used a related measure but added gradients to

the objective function in order to account for perceptual feature

differences (e.g., color banding). Minimizing this objective func-

tion is similar to solving an Euler-Lagrange differential equation

and finally (after a reformulation) a quadratic programming prob-

lem. Kimmel’s approach is more of theoretical interest, since it

requires devices with convex gamuts – a property that most real

devices do not possess. Furthermore, Nakauchi and Kimmel et al.

construct their objective function in a way that ∆L∗, ∆a∗ and ∆b∗

image-difference plains are treated separately and without con-

sidering the direction of difference. Optimizing such objective

functions might lead, for instance, to adverse hue shifts.

In a recent publication Zolliker et al. [11] used a hue-

enhanced modification of the SSIM index [12] to fuse images

resulting from different gamut mapping algorithms. Visual exper-

iments show that the resulting images are judged to be more simi-

lar to the originals than the results of the gamut mapping methods

employed for the fusion process.

Further enhancements considering chromatic deviations

were able to significantly improve the prediction performance of

the SSIM index for gamut mapping distortions [13, 14]. Even

though there is still much room for improvement, such image-

difference measures could be directly used as objective functions

for gamut mapping.

In this paper, we propose an algorithm that incorporates

a slightly modified version of an image-difference measure de-

scribed in [14] as an objective function for gamut mapping. Our

aim is not only to present this method but also to learn more about

the underlying image-difference measure.

The Image-Difference Measure
An image-difference measure maps two images and a set of pa-

rameters specifying the viewing conditions into a single number

that is a prediction of the perceived image difference. The mea-

sure employed in this paper is called color image-difference (CID)

measure. It is based upon an extension of the SSIM index [12] to

color images [14]. For computing the CID measure between two

images X ,Y of the same size, they need to be normalized in a pre-

ceding step to reference viewing conditions by an image appear-

ance model (e.g., to the viewing distance, luminance level, etc.)

and then transformed into a working color space. We used the

nearly perceptually uniform LAB2000HL opponent color space

[15], which is moreover hue linear with respect to the Hung-Berns

data [16], i.e. lines of constant perceived hue agree well with lines

of predicted hue. The color space has a lightness axis ”L”, a red-

green axis ”a” and a blue-yellow axis ”b” similar to the CIELAB

color space that has some shortcomings with respect to hue lin-

earity and perceptual uniformity.

The CID measure incorporates five terms to predict local

lightness (lL), chroma (lC), and hue (lH ) differences as well as lo-

cal lightness-contrast (cL) and lightness-structure (sL) differences.

The terms are defined on rectangular windows covering the same

regions within the images X and Y :

lL(x,y) =
1

c1 ·∆L(x,y)
2
+1

, (1)

cL(x,y) =
2σxσy + c2

σ2
x +σ2

y + c2
, (2)
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sL(x,y) =
|σxy|+ c3

σxσy + c3
, (3)

lC(x,y) =
1

c4 ·∆C(x,y)
2
+1

, (4)

lH(x,y) =
1

c5 ·∆H(x,y)
2
+1

, (5)

where x, y are the pixels within the windows, σx and σy are the

corresponding Gaussian weighted standard deviations computed

for the lightness component and σxy is the Gaussian weighted cor-

relation of the lightness values between the windows. The param-

eters ci are required to adjust the terms to the working color space

and were set to c1 = c4 = 0.002, c2 = c3 = 0.1, and c5 = 0.008 as

proposed in [14]. ∆F(x,y) denotes the Gaussian-weighted mean

of the pixel-wise difference functions ∆F(x,y) computed for each

pixel pair (x,y) within the window. These functions are defined

as follows:

∆L(x,y) = Lx −Ly, (6)

∆C(x,y) =
√

a2
x +b2

x −
√

a2
y +b2

y , (7)

∆H(x,y) =
√

(ax −ay)2 +(bx −by)2 −∆C(x,y)2. (8)

Applying the terms defined in eqs. (1)-(5) within slid-

ing windows results in five difference maps LL(X ,Y ), CL(X ,Y ),
SL(X ,Y ), LC(X ,Y ) and LH(X ,Y ). They have the same size as

the images to be compared (assuming an appropriate padding of

the images’ border pixels). The CID measure is then computed as

follows

P(X ,Y ) = 1−LL(X ,Y )CL(X ,Y )SL(X ,Y )LC(X ,Y )LH(X ,Y ), (9)

where the bar denotes the mean computed for the pixel-wise prod-

uct of the maps. The CID measure is in the range of P(X ,Y ) ∈
[0,1]. Larger values indicate larger image differences.

In contrast to the original SSIM index [12], chroma (lC) and

hue (lH ) differences are considered and the lightness difference

term (lL) is adjusted to a perceptually uniform color space. These

modifications significantly improve the prediction performance of

the SSIM index on a large visual dataset investigating gamut map-

ping distortions by paired comparison [14].

Methodology
We use the CID measure defined in eq. (9) as an objective func-

tion for gamut mapping, i.e. given the original image X we are

looking for an image Z that solves the optimization problem

Z = argmin
Y ˜⊂G

P(X ,Y ), (10)

where the expression Y ˜⊂G means that each pixel color of image

Y is within the gamut G ⊂ LAB2000HL of the output device.

We solve this constrained optimization problem by utilizing

a special property of P: Distortions within remote image regions

contribute independently to the overall image difference.

To explain this in more detail, let (Xi,Yi), i ∈ I be a set of

non-overlapping rectangular sub-images extracted from the image

pair (X ,Y ) and I is a set of pixel locations indicating the sub-

images’ center pixels. Xi and Yi cover the same region within

the corresponding images. If the window size employed by P is

Xi

Xj

Yi

Yj

Reference Image X Distorted Image Y

P(Xi ,Yi )

P(Xj ,Yj )

Figure 1. Distortions resulting from changing the center pixels of sub-

images (Xi,Yi) and (X j ,Yj) contribute independently to the overall image dif-

ference P(X ,Y ) if a 3× 3 window is used to compute P. The center of sub-

images (Xi,Yi) has a pixel position of i = (i1, i2) and the center of sub-images

(X j ,Yj) has a pixel position of j = ( j1, j2) = (i1 +2, i2 +5).

n×n pixels (n odd) then the size of the sub-images is (2n−1)×
(2n− 1). Figure 1 shows an example of such sub-images. The

mentioned property can be written as follows

P(X ,Y +∑
i∈I

E i(yi)) =

P(X ,Y )+
K

N
∑
i∈I

[P(Xi,Yi +W (yi))−P(Xi,Yi)] ,
(11)

where E i(yi) is an image of the same size as Y . All pixel values

of E i(yi) are zero except at location i where the pixel value is

yi ∈ R
3. W (yi) is an image of the same size as Yi composed of

zero-valued pixels except the center pixel with value yi. N is the

number of pixels in X or Y and K = (2n−1)2.

In other words: By changing the center pixels of sub-images

located in remote image regions the CID measure does not need

to be recomputed completely. It is sufficient to compute the CID

measure of the sub-images and upgrade the overall CID measure.

From this property the following implication can be derived

P(Xi,Yi +W (yi))≤ P(Xi,Yi)⇒ P(X ,Y +E i(yi))≤ P(X ,Y ), (12)

which allows us to construct a descent direction for the optimiza-

tion by considering only small sub-images.

In this work, we use discrete optimization to solve the prob-

lem stated in eq. (10). To determine a suitable starting image for

our iteration, the pixel colors of the reference image X must be

transformed into the gamut G using a common gamut mapping

algorithm (GMA), i.e. Y = GMA(X)˜⊂G. The in-gamut image Y

is upgraded at pixel position i by solving the following discrete

optimization problem for the sub-images Xi and Yi

Y (i) = Y (i)+ argmin
z∈H(i)

P(Xi,Yi +W (z)), (13)

H(i) =
{

z ∈ {−α ,0,α}3 | Y (i)+ z ∈ G
}

,

where α is a fraction of the just noticeable distance (JND) and

Y (i) is the LAB2000HL color of the i-th pixel of Y . The value α

can be chosen independently of the pixel color Y (i) in a perceptu-

ally uniform color space. Since H(i) has at most 33 = 27 elements

a brute force approach is reasonable. Without going into detail,

it is worth mentioning that the five difference maps required to
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determine P(Xi,Yi) need to be modified only slightly for comput-

ing P(Xi,Yi +W (z)), z ∈ H(i). The numerical effort of upgrading

these difference maps is rather small.

Solving problem (13) for all pixels of Y is denoted as one

iteration. Algorithm 1 shows all steps as a pseudo-code keeping

the previous terminology.

Algorithm 1 – CID-OPTIMIZED GAMUT MAPPING

INPUT: Gamut G, reference image X (m1-rows, m2-columns)

Y = GMA(X)˜⊂G, where GMA is a gamut mapping algorithm

REPEAT

Y ′ = Y

FOR EACH i ∈ {1, . . . ,m1}×{1, . . . ,m2}

Y (i) = Y (i)+ argminz∈H(i) P(Xi,Yi +W (z))

END FOR

UNTIL P(X ,Y ′)−P(X ,Y )< ε

OUTPUT: Y

Please note that the FOR-loop can be parallelized because of

property (11). The algorithm is terminated if the image-difference

improvement between two iterations falls below ε > 0.

Results and Discussion
The primary focus of this paper is not to develop a new gamut

mapping algorithm that improves the state of the art. Our aim

is rather to propose and investigate a method to incorporate even

complex image-difference measures for gamut mapping by utiliz-

ing a simple property. It should be noted that the performance of

this approach is limited by the prediction performance of the em-

ployed measure. Lissner et al. [14] showed that the CID measure

has still much room for improvement and it is beyond the scope

of this work to enhance the accuracy of the image-difference mea-

sure for obtaining better gamut mapping results. It is worth men-

tioning that we can replace the CID measure employed in this

work by any measure that possesses property (11).

The major aim of the experiments is to investigate the con-

vergence behavior with respect to the number of required iter-

ations and local minima. We are also interested if the starting

images resulting from existing GMAs can be improved by the op-

timization and if there are any artifacts in the resulting images.

Experiments
We mapped five images shown in figures 4 and 5 onto a small

newspaper gamut by minimizing the CID measure defined in eq.

(9). The gamut is specified by the USNewsprintSNAP2007.icc

profile and is shown in figure 2. We used a very small gamut pos-

sessing a black point with high lightness to ensure large visible

distortions. Two point-wise GMAs were used to map the refer-

ence images into the gamut to obtain a valid starting image for

the optimization:

1. CLIPSLIN: Chroma and lightness clipping towards the

middle-gray value.

2. SGCK: Chroma-dependent sigmodial lightness mapping

followed by knee scaling towards the CUSP [1].

Both GMAs were applied within the LAB2000HL color space

[15]. Mappings were performed along lines of constant hue.
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Figure 2. Media-relative CIELAB plot of the newspaper gamut used in the

experiments.

Normalizing the input images to reference viewing condi-

tions results in an improved prediction performance of the CID

measure [14]. In this paper, the normalization step was omit-

ted and all calculations were performed on the raw images. An

11× 11 window was used. For the optimization we employed a

step length (i.e. α – see eq. (13)) that corresponds to approx. 0.4

CIEDE2000 units – a color difference that can be assumed to be

below JND on typical displays.

Discussion
Our results show that the proposed optimization method con-

verges to solutions that depend on the starting image, i.e., on the

GMA employed to map the reference image into the gamut. This

is also reflected by the CID values resulting from the optimization

as can be seen from figure 3. This figure shows also that after ap-

proximately ten iterations the predicted image difference remains

nearly constant. In average, twelve (and at most sixteen iterations)

were necessary to terminate the optimization for ε = 0.001 (see

algorithm 1).
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Figure 3. Image difference vs. iteration number

The optimized images show much smaller predicted image

differences to the originals than the starting images. However,

does the optimization minimize also the perceived image differ-

ence? This question is clearly related to the prediction perfor-

mance of the CID measure. The answer tells us whether the opti-

mization approach is reasonable for today’s state of the art image-

difference measures. We conducted a visual experiment employ-

ing seventeen unbiased color-normal observers (six females and

eleven males) to investigate the visual effects of the optimiza-

tion for our test images and GMAs. The starting image (ob-

tained by CLIPSLIN or SGCK) and the corresponding optimized
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CID = 0.307 CID  = 0.198Lula
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Figure 4. The top row shows the original Lula image (middle) gamut mapped by SGCK (left) and the corresponding optimized image (right). The lightness,

lightness-contrast, and lightness-structure difference maps indicate how these image-difference attributes are changed by the optimization. The color-difference

maps are negligible.

image were shown together with the reference image on a cali-

brated display. Subjects were asked to judge what image is more

similar to the reference. Each image triplet was shown twice to

each observer. In 82.6% of all cases the optimized image was se-

lected. 87.1% of the decisions preferred the optimized images if

the starting image was computed by CLIPSLIN. 78.2% favor the

optimized images if the starting image was computed by SGCK.

These results are significant (p < 0.01). The perceived image dif-

ference was clearly reduced by the optimization. If state of the art

spatial-gamut mapping algorithms might also be further enhanced

by minimizing the CID measure is an open question and shall be

left to future comparison experiments.

Finally, we analyzed the resulting images with respect to ar-

tifacts. Lightness artifacts were indeed found, particularly in dark

areas. Their occurrence highly depend on the starting image, i.e.,

the GMA used to generate the initial in-gamut image. Optimizing

the Lula image results in some artifacts that can be seen in figure

4. One interesting artifact is shown at the jacket’s pinstripes that

are lightness-inverted to the background compared to the refer-

ence image. The reason is the starting image that already shows

this artifact. Even though the CID-optimization clearly improved

contrast and structure (which is well illustrated by the correspond-

ing difference maps above) this type of artifact affects only the

lightness difference map. The lightness-inversion is neither a con-

trast nor a structural deviation. The optimization found a local

minimum in this area.

Another artifact is found in the upper right and lower left

corner of the optimized Lula image. These artifacts are caused by

another local minimum and can be clearly detected by the struc-

ture difference map. Furthermore, we found some color ringing
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e.g., in the Speedway image above the helmets. We believe that

the optimization has too many degrees of freedom in the color

channels. Adding a structural term for chroma or hue to the em-

ployed CID measure would probably solve this problem.

Conclusions
In this paper, gamut mapping is considered as a constrained op-

timization problem. An image-difference measure is minimized

for a given reference image subject to all in-gamut images. We

employed a color enhanced modification of the structural similar-

ity (SSIM) index, called color image-difference (CID) measrue,

as the objective function. Utilizing that distortions within remote

image regions contribute independently to the measure, an iter-

ative algorithm to solve the constrained optimization problem is

proposed. Starting from an in-gamut image computed by an ex-

isting gamut mapping algorithm (GMA), in each iteration step

every pixel is changed by solving a constrained discrete optimiza-

tion problem locally. Results show distinct improvements with

respect to retaining contrast and structural information. A visual

experiment validated that the optimized images have significantly

smaller perceived image differences to the originals than the start-

ing images. Spatially-confined artifacts resulting from local min-

ima uncover new research directions to improve the underlying

image-difference measure.
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Figure 5. The optimized images (right column) used the CLIPSLIN images (left column) as starting images for the iteration. The middle column shows the

reference image.
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