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Abstract 
A variety of multi-spectral imaging methods are discussed for 

acquiring spectral information from a scene.  We first review 

conventional multispectral imaging approach.  The conventional 

imaging systems are mostly constructed by multi-band imaging 

devices with different filtration mechanism at the sensor side 

under passive illumination.  We show some imaging devices, 

estimation algorithms, and applications.  Recently, active spectral 

imaging attracts much attention as promising technology.  The 

active spectral imaging method has the possibility of recovering 

spectral reflectance information and estimating tristimulus values 

of object surface in high speed.  We introduce a spectral imaging 

technology by synchronizing a programmable light source and a 

high-speed monochrome camera.  Two effective applications to 

spectral reflectance recovery and tristimulus imager are described. 

Introduction 
Multispectral imaging technology is a useful technology that 

is now widespread in all fields related with visual information.  So 
far a variety of multispectral imaging systems and methods have 
been proposed for acquiring spectral information from a scene.  
Figure 1 shows the number of papers related with multispectral 
imaging, presented in the CICs of the past 19 years as a function of 
CIC number.  The first paper in CIC was entitled "Analysis 
multispectral image capture" by Peter D. Burns and Roy S. Berns, 
1996 [1].  In the same year, "Multichannel vision system for 
estimating surface and illuminant functions" by the author was 
published in JOSA, 1996 [2].   Therefore we can consider that the 
year of 1996 was the starting point of multispectral imaging.  The 
largest number of papers at 14 were presented in CIC19 of the last 
year, when MCS (Multispectral Color Science) joined to CIC. 

The session titles related with multispectral imaging in the 
past CICs are listed as follows: 

CIC6 : Input 
CIC7 : Image Capture 
CIC9 : Spectral Image Analysis 
CIC12 : Multi-spectral / Multi-primary Systems 
CIC13 : Spectral Imaging 
CIC14 : Multi-spectral imaging 
CIC15 : Spectral Color 
CIC17 : Spectral Color 
CIC19 : Multispectral Color Science (joint with 13th MCS). 
The research contents cover a broad range of areas, including 

spectral image capture, spectral reflectance estimation, illuminant 
estimation, spectral image compression, color reproduction system 
for spectral image, and computer graphics based on spectral 
images.  The application fields of multispectral imaging look 
medicine, human skin, art (mainly art paintings), and wide gamut 
technology in the past.  However, it is quite certain that application 
in the field is expanding. 

  

 
Figure 1. Number of papers related with multispectral imaging, presented in 

past 19 years. 

Some situations requiring the spectral imaging technology are 
as follows: 

(1) An imaging system based on trichromacy faces the 
limitation that a color camera with three channels RGB cannot 
always satisfy the color matching property of the human visual 
system, called the Luther condition.  Therefore the color camera 
cannot be a colorimeter. 

(2) Surface-spectral reflectance exhibits a physical 
characteristic inherent to an object surface.  Recovering the 
spectral reflectance functions from image sensor outputs is 
necessary not only for solving vision problems such as color 
constancy, but also for material identification and color image 
production.  In such cases, three-channel camera has serious 
difficulty in estimating the accurate spectral reflectances. 

(3) Spectral analysis is often needed for the detail analysis of 
object surfaces in a natural scene.  Spectral synthesis is also 
needed for realistic color image production of the object surfaces 
under arbitrary observation conditions.  

In the following, first, we will review conventional 
multispectral imaging approach.  The conventional imaging 
systems are mostly constructed by multi-band imaging devices 
with different filtration mechanism at the sensor side under passive 
illumination. We will show some typical imaging devices, 
algorithms for estimating spectral functions, and applications, 
which are mostly based on works by the author and his colleagues.   

Recently, active spectral imaging attracts much attention as 
promising technology [3-8].  The active spectral imaging method 
has the possibility of recovering spectral reflectance information 
and estimating tristimulus values of object surface in high speed.  
We will introduce a spectral imaging technology by synchronizing 
a programmable light source and a high-speed monochrome 
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camera.  The light source is capable of emitting arbitrary spectrum 
in high speed, so that the system has the advantage of capturing 
spectral images without using filters.  First, a projector for 
spectrally rendering a real scene is described as a fundamental 
usage of the spectral imaging system.  Second, the effective 
applications to spectral reflectance recovery and tristimulus imager 
are described. 

Conventional Spectral Imaging Approach 

Various imaging systems 
Some representative spectral imaging systems incorporating 

typical filtration mechanisms are shown as follows: 
(1) using one or two additional color filters to a trichromatic 

digital camera [9 , 10], 
(2) combining a monochrome camera and color filters with 

different spectral bands [2], 
(3) using narrow band interference filters [11 , 12], and 
(4) using a liquid-crystal tunable (LCT) filter to a 

monochromatic camera [13 - 15]. 
Figure 2(a) shows a system of (1) for multi-band 

omnidirectional imaging which was realized with a trichromatic 
digital camera, a fisheye lens, color filters, and a rotating table.  
Figure 2(b) shows the spectral sensitivity functions of the camera.  
For multi-spectral image acquisition, we selected additional color 
filters and placed these between the lens and the camera body.  
Figure 2(c) shows the spectral transmittances of these filters.  The 
filter SP-6 is effective for shifting the spectral sensitivities to the 
short wavelength and long wavelength, while SP-7 is effective for 
shifting the spectral sensitivities to the middle wavelength.  An 
imaging system with six spectral bands in the visible wavelength 
region is produced by combining these transmittances to the 
original spectral sensitivities.  Figure 2(d) shows the overall 
spectral-sensitivity functions of the present multi-spectral imaging 
system. 

Figure 3(a) shows an imaging system of (3) consisting of a 
monochrome CCD camera, a C mount lens, an automatic filter 
changer, and eight interference filters.  Figure 3(b) shows the 
composite spectral sensitivity functions for eight sensors.  The 
interference filter utilizes the interference effect of light occurred 
by a dielectric material and a metal thin film.   The spectral 
transmission characteristics of the interference filter depend on the 
index of refraction and the incidence angle.   So we note that the 
registration error occurs in the acquired images by this type of 
imaging system. 

Figure 4(a) shows an imaging system of (4) consisting of the 
LCT filter and a monochrome CCD camera using Peltier cooling to 
reduce noise.  This filter provides a convenient type of filtering 
mechanism since spectral channels are narrow and variable by a 
computer control.  Although narrow-band filtration is required 
from the standpoint of precise measurement of spiky spectra, the 
images by narrow bands are often dark and noisy.  So the cooling 
system is needed to improve the SN ratio.  The present band 
widths are about 10 nm in the visible range.  Figure 4(b) represent 
the overall spectral-sensitivity functions in 61 channels.   

Some of the shortcomings of the conventional systems are (1) 
latency time due to multiple capturing, (2) time consumption due 
to filter change, (3) difficulty in designing optimum filters, (4)  

 
(a) Imaging System                  (b) Camera spectral sensitivity function 

 
(c)Additional color filters          (d) Overall spectral sensitivity function 

Figure 2. Omnidirectional imaging system. 

 

(a) Imaging System                          (b) Spectral sensitivity function 

Figure 3. Imaging system using interference filters. 

 

(a) Imaging System                          (b) Spectral sensitivity function 

Figure 4. Imaging system using LCT filter. 

accuracy inferior to a spectrometer, and (5) long exposure time 
because of low filter transmittances. Recently, a new type of 
sensor, called Transverse Field Detector (TFD) was proposed [16].  
The sensitivities of this type of sensor are spectrally tunable by 
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taking advantage of the light absorption of silicon.  There are 
reported only preliminary simulations of a theoretical imaging 
system using the sensor [17].   It should be noted that these multi-
spectral imaging systems are based on the filtration mechanism at 
the sensor side under passive illumination. 

Estimation algorithms of spectral functions 
First, we present algorithms for estimating color signals in a 

natural scene, which contains direct illuminations of daylights and 
indirect illuminations of the reflected lights from different object 
surfaces.  Next, we present an algorithm for estimating spectral 
reflectance of an object surface under a known illuminant. 
 
A. Color signals from low-dimensional camera data 

If the imaging system is noise free, the sensor outputs are 
modeled as a linear system 

700

400

( ) ( )i iE R dρ λ λ λ=∫ ,   (i=1, 2, ..., n)                               (1) 

where n represents the number of sensors, ( )E λ  is the color signal, 
( )iR λ  is the spectral sensitivity function of the i-th sensor.  If n is 

small, a finite-dimensional linear model is available for describing 
the continuous spectral functions by only a small number of basis 
functions.  Let us express ( )E λ  as a linear combination of m basis 
functions as 

1

( ) ( )

m

i i

i

E Eλ ε λ
=

=∑     ,                                                           (2) 

where { ( )
i

E λ , i=1, 2, ..., m} is a statistically determined set of 
basis functions, and { iε } is a set of weighting coefficients. 

To derive the basis functions we created two spectral datasets 
for surface-spectral reflectances and light sources [18].  
Concerning surface reflectance, we collected many objects from 
the real world.  Figure 5(a) shows the set of spectral reflectance 
curves of 871 object surfaces. Concerning light source, we used 
the CIE standard illuminants with different correlated color 
temperatures from 5000K to 10000K and a small number of the 
direct measurements of the sky.  Figure 5(b) shows the spectral 
distributions of nine light sources. 

Next, a large database of about 8000 color signals was 
produced by multiplying the surface-spectral reflectances and the 
light source spectra.  PCA was then applied to the database of 
color signals, and the basis functions were obtained as the first m 
principal components. 

The illuminant weight vector 1
t

2[ , , ..., ]mε ε ε=ε  is estimated 
from the sensor outputs in the form   ( )x+=ε Λ ρ  where ( )xρ  is the 
sensor output vector and +Λ  is the generalized inverse of a n x m 
matrixΛwith (i, j) elements as ( ) ( )j iE R dλ λ λ  ∫ .  In our experiments, 
m = 5 was the most appropriate. 

 
B. Color signals from high-dimensional camera data 

If the imaging systems have many sensor outputs in equal 
intervals, which are narrow band spectral sensitivities as shown in 
Figure 4(b), a direct method is adopted for effective estimation of 
natural scene color signals.  Suppose that the visible range is 
segmented into a sequence of narrow wavelength bands with even 
intervals {red, yellow-red, yellow, green-yellow, ..}.  A one-to-one 
mapping holds between the sensor output and the wavelength band. 

   
(a) Reflectances                                (b) Light sources 

Figure 5. Databases of surface-spectral reflectances for a variety of objects on 

university campus and spectral-power distribution for nine light sources. 

Let 1 2, ,..., nλ λ λ  be the center wavelengths of the sensor 
spectral sensitivities.  The narrow band condition of each sensor 
permits us to describe the sensor output as 

700

400

( ) ( )ii iE R dλρ λ λ= ∫ ,     (i=1, 2, ..., n)                          (3) 

Therefore the spectral distribution of the color signal is estimated 
as a sequence of n numerical values. 

700

400

( ) ( )i i iE R dλ ρ λ λ= ∫ .       (i=1, 2, ..., n)                        (4) 

 
C. Color signals from noisy camera data 

The observed images can include various noise on sensors 
and optical process.  Then the sensor outputs are described as 

700

400

( ) ( )i i iE R d nρ λ λ λ= +∫ ,   (i=1, 2, ..., n)                         (5) 

where in  is the noise component with zero mean.  We sample each 
spectral function at N points with an equal interval λ∆ in [400, 
700nm].  Let e be an N-dimensional column vector representing 
the color signal ( )E λ and R be an n × N matrix with the element 

( )ij i jRr λ λ= ∆ , and define ρ  be an n-dimensional column vector 
representing the sensor outputs. Then the above relationships are 
summarized in a linear matrix equation 

= +ρ R e n .                                                                        (6) 

When the signal e and the noise n are uncorrelated, the Wiener 
estimate ê  is given as 

1t t
ss ssˆ )( −= +e C R C Σ ρR R ,                                              (7) 

where ssC is the correlation matrix of color signals t
ss ][=C E ee  and 

Σ  is the covariance matrix of noises t[ ]=Σ E nn  (see [18]).  We 
can assume that the noises in each spectral channel are statistically 
independent.  In this case, the covariance matrix is reduced to be 
diagonal as 2 2 2

1 2diag( , ,..., )nσ σ σ=Σ .   
The noise component includes image sensor noises based on 

thermal noise and shot noise, and an approximation error in the 
model.  Estimation of the noise properties is not easy.  Although 
there are several suggestions for this, we determined the SNR in an 
empirical way.   The Wiener estimator relies upon the statistics of a 
data set to achieve the estimation.  To determine the correlation 
matrix ssC  properly, we need a large database of color signals.  For 
this purpose we can use the database, consisting of two spectral 
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datasets for surface-spectral reflectances and light sources shown 
in Figure 5. 
 
D. Spectral reflectance from noisy camera data under a 

known illuminant 

We consider recovering the surface spectral reflectance from 
the noisy sensor outputs, which are modeled as a linear system 

700

400

( ) ( ) ( )i i iS E R d nρ λ λ λ λ= +∫ ,   (i=1, 2, ..., n)                (8) 

where ( )S λ  is the spectral reflectance of an object surface, and 
E(λ) is the illuminant spectrum.  Let s be an N-dimensional 
column vector representing ( )S λ , and R be an N x n matrix with 
the element ( ) ( )ij j i jE Rr λ λ λ= ∆ .  The sensor output vector ρ is 
represented  as = +ρ R s n . Note that this equation is the same 
fashion as (6).  Therefore, if the illuminant E(λ) is known in 
advance or measured directly using a spectro-radiometer and a 
standard white reference, the estimate of s can be given by the 
Wiener estimator [19]. 

Figure 6 demonstrates a small oil painting called “Flowers” 
used in our experiments and the estimation result of surface 
spectral reflectance in Area 3. The estimated spectra are depicted 
in bold curves, which are compared with the broken curves of the 
spectro-radiometer measurements and the dashed curves of the 
estimates by the RGB camera method.  The multispectral imaging 
method recovers the spectral reflectances more precisely than the 
RGB system does. 
 

   

Figure 6. Estimation result of spectral reflectance in Area 3 of Oil painting “Flowers.” 

Spectral Imaging Approach Using Active 
Illuminant 

Imaging system 
Figure 7 shows the spectral imaging system [20], consisting 

of a high speed monochrome camera (Epix SV643M), a 
programmable light source (Optronic Laboratories OL490), and a 
personal computer (PC) for controlling the camera and the light 
source.  The light source uses digital micromirror device (DMD) is 
well used for realizing a spectrally controllable light.  Figure 8 
depicts the principle of the programmable light source using DMD 
technology.  It is composed of a xenon lamp source, a grating, a 
DMD chip, and a liquid light guide.  In this system, a light beam of 
xenon is separated by the grating into its constituent wavelengths.  
The wavelength and intensity information is controlled using the 
two-dimensional DMD chip, where one axis corresponds to the 

wavelength distribution of the spectrum, and the other axis to the 
intensity distribution.  An advantage of the DMD-based 
programmable light source is that it can switch the output light 
spectrum much faster than a light source based on a liquid-crystal 
display [21 , 22]. 
 
 

  

 

 

Figure 7. Spectral Imaging System 

 

Figure 8. Principle of the programmable light source. 

Illuminant Control 
The light source system can produce emissions at a single 

wavelength and broad spectrum.  We design the emission of a 
spectral function in two modes of time sequence: steady-state and 
time-varying.  In the steady-state mode, the same spectrum is 
generated at every time.  While in the time-varying mode, different 
spectra can be generated at every time.  Let ( )

i
Eλ λ  be a spectral-

power distribution emitted at a central wavelength iλ  and 
( 1

( )Eλ λ , 2 ( )Eλ λ , …, ( )
n

Eλ λ ) be the time sequence.  Figure 9 
illustrates an example of spectral-power distributions generated as 
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a time sequence.  A set of single spectral functions with narrow 
width of wavelength is generated at an equal wavelength interval 
in the visible range.  Figure 9(a) is a 3D perspective view in the 
time-varying mode, where different spectral functions are depicted 
in the time series 11

( , )E tλ λ , 22
( , )E tλ λ , …, ( , )nn

E tλ λ .  Figure 9(b) 
is the view in the steady-state mode, where the same spectrum is 
depicted as 1 2

( , ) ( , ) ... ( , )
n

E t E t E tλ λ λλ λ λ+ + +  at each time. 
 
 

   

(a)                                                                (b) 

Figure 9. Spectral-power distributions generated as a time sequence.            

(a) Time-varying mode,  (b) Steady-state mode. 

Illuminant projection for spectral rendering 
The feasibility of illuminant-spectral shape was extremely 

limited in the conventional lighting systems because the illuminant 
spectra were produced by combining several basis light sources of 
wide spectral bands.   In contrast, the proposed imaging system 
enables us to observe object surfaces under illuminant with 
arbitrary spectral-power distribution.  We examined the accuracy 
of illuminant spectra produced by the present system. 

Human visual assessment of object surface appearance is 
often performed under typical light sources such as Illuminants A 
and D65.  Figure 10 shows the illuminant spectral distributions for 
CIE Standard Illuminants A and D65, which were produced by our 
control system.  The produced spectra are almost coincident with 
the target spectra. 
 
 

   

(a)                                                                (b) 

Figure 10. Illuminant spectral distributions produced for CIE Standard 

Illuminants A and D65.  (a) Illuminant A, (b) Illuminant D65. 

A visual assessment system for spectrally rendering 3D object 
surfaces in a real scene is constructed by producing illuminant with 
arbitrary spectral-power distribution in the present system.  Figure 
11 demonstrates the appearances of a flower decoration by 
projecting two different LED illuminants of about 6500K color 
temperature.  Note that Figure 11 has real scene photographs 

captured by a digital camera.  We confirmed that the color 
appearances of these photographs displayed on a calibrated sRGB 
monitor were close to the visual appearance.  Figures 11(a) and (b) 
show the illuminant spectral power-distributions of a white LED 
and a RGB mixing LED, respectively.  These illuminants were 
projected on the same object.  The color temperatures of the 
illuminants are quite close with each other as (a) 6430K and (b) 
6485K, and also the xy chromaticity coordinates are almost the 
same as (a) (x, y) = (0.313, 0.332) and (b) (x, y) = (0.314, 0.332).  
However, it is interesting to observe that the appearances of the 
colorful flower decoration are greatly distinguished under the two 
illuminants in Figures 11(c) and (d).  Note that the former 
emphasizes the appearance of green colored surfaces, and the latter 
emphasizes the appearance of red colored surfaces.  Thus, the 
color appearance is strongly affected by the illuminant spectral 
curve.  Therefore, this projection system is useful for various 
purposes such as high-speed spectral rendering of a real scene, 
metamer detection, visual evaluation of surface appearance, and 
investigation of the Color Rendering Index. 
 

 

(a)                                                            (b) 

  
 (c)                                                           (d) 

Figure 11. Appearances of a flower decoration under different LED illuminants 

with 6500K color temperature.  (a) SPD of White LED, (b) SPD of LED by 

mixing RGB, (c) Appearance of the flower decoration under illuminant (a), (d) 

Appearance of the flower decoration under illuminant (b). 

Applications 

A. Spectral reflectance recovery 

Surface-spectral reflectance can be recovered under active 
illumination.  However, it was difficult to accomplish the active 
imaging system with merits in both computation time and 
recovering accuracy, because the previous methods employed 
broad band light sources, which consist of linear combination of 
the fixed spectral-power distributions of primary colors. 

We solve the problem of spectral reflectance recovery 
effectively by using the present spectral imaging system.  When the 
reciprocal function of the camera sensitivity is projected onto an 
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object surface as a time sequence of spectrum, the spectral 
reflectance is obtained directly from the camera outputs at the 
spatial resolution of camera pixels. 

Let ( )S λ  and ( )V λ  be the surface-spectral reflectance 
function and the sensor-spectral sensitivity function, respectively.  
When an object surface is illuminated by a light source with 
spectrum ( , )I tλ , the camera output at time  i

t  is described as 

( ) ( ) ( , ) ( )i iO t S I t V dλ λ λ λ=∫ .                                       (9) 

If the spectral reflectance is smooth and the light source is a 
narrow-band illuminant ( , )E tλ λ  at the center wavelength λ , the 
camera output is rewrote as 

( ) ( ) ( , ) ( ) ( ) ( , ) ( )ii ii i iO t S E t V d S E t V dλ λλ λ λ λ λ λ λ λ
 
 
 
 

==∫ ∫ .  (10) 

Here note that the sensor-spectral sensitivity function ( )V λ does 

not have to be sharp or rather should be broad enough in the 
visible wavelength range, because the illuminant is narrow in the 
present system.  Since the bracketed term of Eq.(10) is 
independent of an object surface, we can calculate it in advance as 

( , ) ( )
ii i

c E t V dλ λ λ λ=∫ . When the surface is illuminated 

sequentially by the narrow-band spectrum with a moving center 
wavelength as shown in Figure 9(a), the surface-spectral 
reflectance (

1( )S λ ,
2( )S λ , …, ( )nS λ ) can be estimated from the 

time sequence of the camera outputs (
1( )O t ,

2( )O t , …, ( )nO t ) as 

( ) ( )
i i i

S O t cλ = . 

If the basis illuminant ( , )
i iE tλ λ  is designed as a reciprocal 

function of ( )V λ , the spectral reflectance is obtained directly 
from the camera output sequence ( 1( )O t , 2( )O t , …, ( )nO t ), without 
computation. 

The above recovering process consists of the sequential 
projection of n times.  If spectral reflectance is represented by 61 
wavelength points sampled with an equal interval of 5 nm in the 
range [400, 700nm], it needs 61 illuminant projections. 

The linear finite-dimensional model of spectral reflectances is 
useful for accelerating the recovering process by reducing the 
number of illuminant projections.  We suppose that the spectral 

reflectance function ( )S λ  can be expressed as 

1

( ) ( )

m

i i

i

S Sλ σ λ
=

=∑ , 

where { }( ), 1,2,...,iS i mλ =  is a statistically determined set of 

orthogonal basis functions for reflectances, and { }, 1,2,...,i i mσ =  

is a set of scalar weights.  In this case, we design the illuminant 
spectra as ( , ) ( ) ( )iI t S Vλ λ λ= , and the corresponding camera 

output as ( )i iO t σ= .  Then, the surface-spectral reflectance is 

recovered from the camera output sequence in the following form 

1

( ) ( ) ( )

m

i i

i

S O t Sλ λ
=

=∑ . 

Obviously the basis functions take negative values except for 
the first basis, which are not optically realizable.  The simplest way 
to solve this problem is to shift the functions upward by adding a 
constant bias as ( ) ( )i iS S Kλ λ= +  to take all positive values.  In 
this case, we need an additional illuminant projection 
( , ) ( )KI t K Vλ λ=  and an additional camera output ( )KO t .  Other 

compensation algorithms is Epstein approximation [23], optimal 
non-negative filter [24], and non-negative matrix factorization [25 , 
26] were also proposed for non-negative components. 

In the present approach, a simple and effective way is 
recommended to separate the basis functions into both positive and 
negative parts, and make symmetric functions with respect to the 
zero-axis. The basis functions are described as 
( ) ( ) ( )i i iS S Sλ λ λ+ −= − .  Figure 12 depicts the illuminant spectra 

{ }( ) ( )iS Vλ λ+  and { }( ) ( )iS Vλ λ−  as a set of the modified basis 
functions with all positive values, where the solid curves and the 
broken ones indicate the positive functions to ( )iS λ+  and the 
symmetric functions to ( )iS λ− , respectively.  In this case, we need 
two projections corresponding to the positive and negative 
functions for each basis function except for the first basis.  Then a 
pair of the camera outputs ( )iO t +  and ( )iO t −  is used for recovering 
spectral reflectance from the linear model equation with 

( ) ( )i i iO t O tσ + −= − .  When we adopt the five-dimensional linear 
model, the reflectance recovering process consists of nine 
illuminant projections.  The number of projections is still much 
smaller than the one in the original sequential projection algorithm. 

We examined the performances in reflectance estimation 
results using an X-Rite Mini Color Checker by the three 
algorithms.  We use RMSE and the CIELAB color difference as 
metrics for spectral matching.  The average RMSE and the average 
color differences *

abE∆  for all 24 color patches were 0.0153 and 
2.52 under D65, respectively, when using the above symmetric 
basis functions.  The frame rate for successively recovering the 
spectral reflectance images is about 13 fps in the present system. 
 

 

Figure 12. Illuminant spectra for the basis functions with positive values. 

B. Tristimulus Imager 

Colorimetry is the scientific technology used to qualify and 
describe the human color perception physically.  The CIE-XYZ 
tristimulus values are most often used as colorimetric values in 
representing the physical correlates of color perception.  The 
traditional methods based on colorimeter or spectrometer cannot 
determine the tristimulus values at the pixel level of a color image, 
but determine the values for a broad area on the object surface at a 
time.  It takes much time to obtain the precise color values.  The 
present spectral imaging system using an active illuminant can be 
applied to a new type of technology aiming at high-speed and 
high-spatial resolution colorimetry.  The new technology of the 
tristimulus imager is based on the projection of the modified color-
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matching functions as illuminant.  The CIE-XYZ values can then 
be obtained at the spatial resolution of camera pixels on the 
illuminated surface directly from the camera responses. 

The tristimulus values X, Y, and Z of an object surface are 
calculated as 

( )
( ) ( ) ( )

( )
T

xX
Y S E y d
Z z

λ
λ λ λ λ

λ

  
  
  
  
     

=∫ ,                                       (11) 

where ( )
T

E λ  is a target illuminant, and ,( ( ), ( ) ( ))x y zλ λ λ  are the 
CIE color-matching functions.  In the traditional technology of 
colorimetry, the above calculation is performed using the light 
reflected from the object surface.  In our new technology, if the 
target illuminant ( )

T
E λ , in which the object is observed, is 

specified like Illuminant D65 or Illuminant A, we can design the 
active illuminant to imitate the environment of observation. 

Let ( )I λ  be a linear combination of the basis spectra in the 

form 

1

( ) ( )

n

i i

i

I c Eλλ λ
=

=∑ . Suppose that this set of basis spectra is 

projected to the object surface in the steady-state mode, the camera 
output is then described as 

( ) ( ) ( )O S I V dλ λ λ λ=∫ .                                             (12) 

Therefore, the tristimulus values can be obtained by the camera 
outputs if three conditions are satisfied as 

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ).

x T

y T

z T

I V E x

I V E y

I V E z

λ λ λ λ
λ λ λ λ
λ λ λ λ

=
=
=

                                                 (13) 

Therefore, the problem is reduced to determining the weights 1c , 

2c , …, nc  for the basis spectra at 1λ , 2λ , …, nλ , so that the 
illuminant spectra are coincident with the modified matching 
functions ( ) ( ) ( )

T
E x Vλ λ λ , ( ) ( ) ( )TE y Vλ λ λ , and ( ) ( ) ( )TE z Vλ λ λ .  

Since we use a monochrome camera, the camera outputs only one 
tristimulus value at one time.  Therefore, the tristimulus values are 
obtained by three camera outputs ( )1 2 3( ), ( ), ( )O t O t O t  in time sequence, 
where 

1 1

2 2

2 3

( ) ( , )

( ) ( ) ( , ) ( )

( ) ( , )

x

y

z

O t I t

O t S I t V d

O t I t

λ
λ λ λ λ

λ

  
   =   
     

∫ .                             (14) 

The tristimulus values are obtained at every pixel point of the 
object surfaces in an image. 

Figure 13 shows the illuminant spectra 

1 2 3( ( , ), ( , ), ( , ))x y zI t I t I tλ λ λ  that were produced in order to obtain the 
XYZ tristimulus values under the CIE Standard Illuminants D65 
and A by the present system.  The broken curves represent the 
target spectra, which are the weighted matching functions 
( D65( ) ( ) ( )E x Vλ λ λ , D65( ) ( ) ( )E y Vλ λ λ , D65( ) ( ) ( )E z Vλ λ λ ) in (a) and 
( A( ) ( ) ( )E x Vλ λ λ , A( ) ( ) ( )E y Vλ λ λ , A( ) ( ) ( )E z Vλ λ λ ) in (b), where 

D65 A( ( ), ( ))E Eλ λ  indicate the illuminant spectral power distributions, 
and ,( ( ), ( ) ( ))x y zλ λ λ  indicate the CIE 1931 color-matching 
functions in this case.  We performed an experiment of colorimetry, 
where the above illuminants were projected to the X-Rite Mini 
ColorChecker.  The accuracy was evaluated by the CIELAB color 
difference.  The average color differences of *

abE∆  for all 24 color 
patches were 2.43 and 2.82 under Illuminant D65 and Illuminant A, 

respectively.  The weighted color-matching functions were 
sequentially projected from the liquid guide cable to the object at 
200 fps and the camera captured the scene of the illuminated 
object synchronously. 
 

 
(a)                                                            (b) 

Figure 13. Illuminant spectra produced for obtaining the tristimulus values 

under (a) Illuminant D65 and (b) Illuminant A. 

Conclusions 
Multispectral imaging technology is a useful technology that 

is now widespread in all fields related with visual information. . 
We have discussed a variety of multi-spectral imaging methods for 
acquiring spectral information from a scene.  First, conventional 
multispectral imaging approach was reviewed.  The conventional 
imaging systems were mostly constructed by multi-band imaging 
devices with different filtration mechanism at the sensor side under 
passive illumination.  We showed several imaging devices, 
estimation algorithms, and applications. Recently, active spectral 
imaging attracts attention as promising technology.  We introduced 
an imaging system by synchronizing a programmable light source 
and a high-speed monochrome camera.  Moreover, two effective 
applications to spectral reflectance recovery and tristimulus imager 
are described. Application in the field is expanding. 
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