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Abstract
In this paper, we put forward a new pre–processing scheme

for automatic analysis of dermoscopic images. Our contribu-

tions are two-fold. First, we present a procedure, an extension

of previous approaches, which succeeds in removing confounding

factors from dermoscopic images: these include shading induced

by imaging non-flat skin surfaces and the effect of light-intensity

falloff toward the edges of the dermoscopic image. This proce-

dure is shown to facilitate the detection and removal of artifacts

such as hairs as well. Second, we present a novel simple yet ef-

fective greyscale conversion approach that is based on physics

and biology of human skin. Our proposed greyscale image pro-

vides high separability between a pigmented lesion and normal

skin surrounding it. Finally, using our pre–processing scheme,

we perform segmentation based on simple grey-level threshold-

ing, with results outperforming the state of the art.

1. Introduction
Melanoma in particular along with other malignant skin can-

cers are among the most rapidly increasing cancers in the world,

with high mortality rate [1]. Early detection of melanoma is very

important, particularly before the metastasis phase when the can-

cer is still localized and it can be completely cured with surgical

excision. Unfortunately, clinical diagnosis of melanoma is diffi-

cult even for experienced dermatologists [2]. Therefore, there is

an increasing demand for computer-aided diagnostic systems to

catch early melanomas.

A popular imaging method for diagnosis and early screening

of pigmented skin lesions is dermoscopy. Inevitably, most efforts

in computerizing diagnosis of melanoma lean towards automatic

analysis of dermoscopic images. The latter typically involves suc-

cessive steps of: pre–processing, segmentation, feature extraction,

feature selection and classification.

The pre–processing, which is the focus of this study, is an

important step that tends to facilitate the segmentation process.

Segmentation, i.e. isolating skin lesions from normal skin sur-

rounding it, is a crucial step itself that will affect all downstream

processes and even the final diagnosis. For example, the pres-

ence of artifacts, such as hair, in the image may disturb the iden-

tification of a lesion’s morphological features. Therefore a pre–

processing of artifact–removal can considerably contribute to the

accuracy of each step, improving the overall performance.

In the following, we propose a new pre–processing scheme

for automatic analysis of dermoscopic images. Our contributions

are two-fold. First, we present a procedure, an extension of previ-

ous approaches, which succeeds in attenuation of shading induced

(a) (b)
Figure 1. (a) input image (the lesion is completely in the shaded area); (b)

after shading attenuation by our approach – The green border is the lesion

boundary detected by Otsu’s grey-level thresholding method.

by imaging non-flat skin surfaces and the effect of light-intensity

falloff toward the edges of the dermoscopic image. We discuss

how this procedure might facilitate the detection and removal of

artifacts such as hairs. Next, we present a simple yet effective

novel approach to convert a colour dermoscopic image (typically

in sRGB) into a greyscale one. Our greyscale conversion ap-

proach is based on biological and optical properties of human skin

and the physics of image formation. Finally, we demonstrate the

effectiveness of our proposed pre–processing scheme by perform-

ing segmentation based on simple grey-level thresholding, with

results outperforming the state of the art.

2. Attenuation of Confounding Factors
Pre–processing methods used for dermoscopy images are

of many kinds, including but not limited to: colour calibration

[3], colour-space transformation [4], removal of artifacts (such

as hairs, ruler markings, air bubbles, black frames, ink markings,

etc.) [5]. Among these, previous efforts have mostly been focused

on development of hair removal algorithms (e.g. [5, 6])

Shading and light-intensity falloff toward the edges of der-

moscopic image is one of the less studied confounding factors.

This could cause colour degradation, and radically alter segmen-

tation results. See Fig. 1 for an example. Shading is induced

by imaging non-flat skin surfaces, and intensity falloff is due to

diffraction of light such that the image is brighter near the center

and darker near the edges (the illumination may deviate from the

center of the image according to the angle between the dermo-

scope and the skin).

To our knowledge, the only study that directly addresses

shading attenuation for dermoscopy images, is the one by Cav-

alcanti et al. [7]. Their approach is an attempt to estimate the il-

lumination as a quadratic function of image coordinates and then

spatially normalizing it. According to their own evaluation of the

method, “it has limited affect on local cast shadows, fails on sur-
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face shapes that are not locally smooth and works best when the

illumination varies slowly across the scene” [7]. We also point

out that their method is highly constrained by its assumptions and

methodology: i) the method assumes the lesion is in the center of

the image and the corners of the image contains only healthy skin.

Further, a window of size 20×20 pixel at each corner is used to

estimate the illumination function. While this seems to be work-

ing on the few sample images provided in their paper, it would in-

correctly estimate the illumination function for images containing

hairs or other artifacts in the corner areas (such as Fig. 2(a)). ii)

their method works best when the illumination varies (smoothly)

from one corner to another. However, it works poorly when the

corners are relatively equally darker than the center of the image,

which is the case for most dermoscopy images, especially those

suffering from intensity falloff (as described earlier).

We begin by following [7] by normalizing the Value channel

of HSV and then converting the image from HSV colour space

to the original RGB. However, we normalize V, as will be de-

scribed shortly, with respect to the intrinsic image [8] of the orig-

inal image. In computer vision, images with lighting removed are

denoted as “intrinsic”. In line with [8], we use the entropy mini-

mization technique to find the intrinsic image. Our tests demon-

strate that the proposed method overcomes the limitations of [7]

while succeeded in removing or strongly attenuating shading and

intensity falloffs.

In the rest of this section, the theory of intrinsic images is

briefly described, followed by our approach for normalizing Value

channel (of HSV), and eventually attenuating shading and other

confounding lighting effects.

2.1 Image Formation
In keeping with [8] we adopt a standard model in computer

vision for colour image formation. Suppose the illuminant spec-

tral power distribution is E(λ ) and, in any reflective case, the

spectral reflectance function at pixel (x,y) is S(x,y,λ ). Then mea-

sured RGB values are given by

Rk(x,y) = ω(x,y)
∫

E(x,y,λk)S(x,y,λk)Qk(λ )dλ (1)

where k = 1..3, ω denotes shading variation (e.g., Lambertian

shading is surface normal dotted into light direction, although we

do not assume Lambertian surfaces here); and Qk(λ ) is the cam-

era sensor sensitivity functions in the R,G,B channels.

Following [8] we adopt a simple model for the illuminant:

we assume the light can be written as a Planckian radiator (in

Wien’s approximation):
E(x,y,λ ,T )≃ I(x,y)k1λ−5exp(−k2/(T λ )) (2)

where k1 and k2 are constants, T is the correlated colour tem-

perature characterizing the light spectrum, and I is the lighting

intensity at pixel (x,y), allowing for a possible rolloff in intensity

towards the periphery of the dermoscopic image. We assume light

temperature T is constant across the image (but is, in general, un-

known).

In line with [8] we assume camera sensors are narrowband or

can be made narrowband via a spectral sharpening operation [9].

In this approximation, sensor curve Qk(λ ) is simply assumed to

be a delta function: Qk(λ ) = qkδ (λ −λk), where specific wave-

lengths λk and sensor-curve heights qk are properties of the cam-

era used. To this end we simplify 1 by substituting E(x,y,λ ) and

Qk(λ ):
Rk = σ Ik1λ−5e−

k2
Tλ S(λk)qk, (3)

The effect of shading and illumination can be eliminated

from eq.(3) by dividing to get the band-ratio 2-vector chromatic-

ities ck = Rk/Rp where p is fixed to one colour channel (usually

the green channel), and k indexes over the other two channels (red

and blue).

Note that the effects of the illumination intensity, I, is re-

moved since it is a constant value at each pixel for all three colour

channels, and the same is true for the shading. While the assump-

tions above are restrictive, they are simply for guiding a model

and have been found to not be necessarily strictly true in practice

– sensors can be broadband and light can be any illuminant with

chromaticity fairly close to the Planckian locus.

2.2 Entropy Minimization
Simplifying eq.(3) by taking logs, we arrive at a model for

pixel log-RGB as follows:

ρk = log(ck) = log(sk/sp)+(ek −ep)/T (4)

where sk = k1λ−5S(λk)qk, sM = 3

√

∏
3
j=1 s j , ek = −k2/λk, and

ek = −k2/3∑
p
j=1 λ j. It can be easily seen that eq.(4) is a straight

line parametrized by T . The direction of this line is defined by

the direction of vector (ek − ep) which is independent of sur-

face. Therefore illumination invariance (intrinsic image) can be

achieved by projecting ρk to the direction (e−ep)
⊥ orthogonal to

(e−ep), which cancels the affect of changes in T .

Direction (e− ep)
⊥ can be found by calibrating the camera

(i.e. dermoscope, here). We, however, follow [8] and use entropy

as internal evidence in the image itself to find the invariant direc-

tion and optimal projection, in each single image. We project ρk,

the 2-D log chromaticity representation of the image, over all pos-

sible directions from 0◦ to 180◦ and choose the direction which

has minimum entropy as the optimal one for projection. The re-

sult of projection onto the 1-D direction is a 1-D intrinsic image,

χ , invariant to all illumination effects such as shading, shadows,

specular highlights, etc. The interested reader is advised to refer

to [8] for further details of this procedure.

2.3 Geometric–mean
According to [8], the quality of the 1-D invariant image

is dependent on the colour channel that is chosen as the divi-

sor. To not rely on any particular colour channel, we divide

not by Rp but by the geometric mean µ(x,y) = (∏3
k=3 Rk)

1
3 at

each pixel, for which the invariance properties above persist:

ψk(x,y) ≡ log[Rk(x,y)/µ(x,y)]. Then ψ is a 3-vector; it is or-

thogonal to (1,1,1). Therefore instead of 3-vectors one can eas-

ily treat these as 2-vector values, lying in the plane orthogonal to

(1,1,1): if the 3× 3 projector onto that 2-D subspace is P, then

the singular value decomposition of P =UUT , where U is a 3×2

matrix. We project onto 2-D vectors φ in the plane coordinate

system via UT :

ψk(x,y) = log[Rk(x,y)/µ(x,y)]; φ =UT ψ (5)

2.4 Illumination Normalization
Our method for attenuation of lighting effects is inspired by

the work of [10, 7]. Both methods proposed to normalize the un-

even illumination in monochromatic images by first, estimating

the local illumination and then, normalizing it over the original
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)
Figure 2. (a) input image; (b) Value channel of HSV space; (c) χ the intrinsic image - (d) attenuation of shading by using our approach; (e) edge map of V

channel (HSV) after shading attenuation; (f) edge map of intrinsic image; (g-h) the difference of edge maps corresponds to the remaining hairs on the image; (i)

inpainting the hair masked by g; (j) output of Dullrazor [6] on original image (compare this with (i), outcome of our approach)

image. Soille [10] used a morphological closing operation to es-

timate the local illumination, while Cavalcanti et al. [7] tried to

model the illumination by a quadratic function of spatial location.

Both methods produce unsatisfactory results for skin images

containing lesions, and in particular in the presence of artifacts

such as hairs. We, on the other hand, propose to normalize the

illumination based on the distribution of intensity values in in-

trinsic image. In keeping with [10, 7], we convert the image from

original RGB to the HSV colour space. The V channel, represents

luminance information and it is independent of chrominance in-

formation. As noted by Soille [10], the V channel provides high

visibility of shading effects. Moreover, as noted by Skarbek and

Koschan [11], “the hue channel (for matte surface while ignor-

ing ambient light) is invariant to changes of surface orientation

relatively to the light source”, discounting shading and shadows.

Figs. 2(b, c) are respectively the Value channel, and χ in-

trinsic image. We first normalize the intensity values in both

monochromatic images, V and χ . Next, the histogram of V is

mapped to the histogram of the intrinsic image χ . Finally, the

original V channel is replaced with this new (normalized) V chan-

nel and the image from HSV is converted to RGB colour space.

As can be seen from Fig. 2(d), the effect of shading and intensity

falloff is significantly attenuated.

An interesting observation can be made: In the image gener-

ated via our proposed method, not only is it shading free but also

is free of thin and short hairs, to a degree which is comparable to

the achievement of dedicated hair removal algorithms. Note that

by examination, we see that the intrinsic image is almost com-

pletely free of hairs – see Fig. 2(c). We plan to further study this

important and interesting side effect of our method.

We take advantage of this observation to create an artifact

free image. Extracting the edge map of our normalized V (i.e.

V channel of shading free image, shown in Fig. 2(e)), and com-

paring to the edge map of the intrinsic image Fig. 2(f), one

can easily recognise that the difference between the two corre-

sponds to hairs. Fig. 2(g) is the “hair mask” created by sub-

tracting two edge maps (we dilated the edges before subtraction

and applied morphological opening after subtraction to remove

small objects). Fig. 2(h) highlights the hair mask in green on the

shading-attenuated skin lesion image.

With the hair mask, one can use e.g. inpainting method [12]

and paint over the hair pixels. Fig. 2(i) is created by using an im-

plementation1 of inpainting approach – compare the results with

Fig. 2(j) obtained by applying the celebrated and highly recog-

nized hair removal software2, Dullrazor [6]. Note that, in our

experiments, it was good enough to set hair pixel colours to zero.

Because, we are using Otsu’s [13] grey-level thresholding method

for segmentation which assumes the lesion is darker than its sur-

rounding, and for this reason zero valued pixels (i.e. detected

hairs) will be detected as background.

A final note on this section: our method should not be con-

sidered as a hair removal algorithm. It can however facilitate the

process. Our proposed approach to deal with images with hair

is to first apply any hair removal method, such as [5], and then

follow with our lighting artifact attenuation. At this stage, one

could take our edge map subtraction approach as a post-process,

to remove the remaining hairs in the image.

1http://www.cc.gatech.edu/∼sooraj/inpainting/
2http://www.dermweb.com/dull razor/
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3. A Novel Colour to Grey–scale Conversion
In the process of automatic analysis of dermoscopic skin im-

ages, often a monochromatic image of skin lesion is required e.g.

for segmentation or feature extraction. In particular, most tex-

ture extraction methods use only intensity information. It is there-

fore crucial that the algorithm which converts a colour image to

greyscale enhances different structures embedded in the image.

Similarly for segmentation, a desired colour representation is one

that intensifies the contrast between the lesion and the normal

skin, whether the segmentation method uses a monochromatic im-

age or any trichromatic colorspace, or even a multi-spectral rep-

resentation.

We propose a new greyscale conversion method that is based

on the optics of human skin and it has direct biological underpin-

nings. Using this greyscale image for skin lesion segmentation

and based on simple grey-level thresholding, we achieved results

outperforming the state of the art.

This greyscale conversion provides higher separability be-

tween lesion and normal skin. We hypothesize that it would im-

prove the performance of any texture extraction method as well,

since it suppresses the normal skin while preserves (and in many

cases enhances) the structure of lesions (see e.g. Fig. 3(a)).

The basic idea behind our method is inspired by the work of

Tsumura et al. [14, 15] which has shown that in a particular novel

colour space, pixel triples of human skin live on a plane, with

(non-orthogonal) basis vectors assumed attributable to melanin

and hemoglobin only.

We here make an observation that the skin plane is narrow

along the direction of its second eigenvector and considerably

wider along the direction of first eigenvector. In particular for skin

lesions, the entire skin colour plane is approximately spanned by

its first eigenvector. Therefore, we project the image, after finding

the skin plane, to the basis corresponding to the first eigenvector

of the data distribution. This process is described next.

3.1 Skin Colour Model

Tsumura et al. first suggested using a simple Lambert-Beer

type of law for radiance from a multilayer skin surface, resulting

from illumination by polarized light [14]. That is, employing a

model similar to a simple logarithm model based on optical den-

sities for accounting for light passing for example through mul-

tilayer slide film. The transmittance through each colour layer is

proportional to the exponential of the negative optical density for

that layer.

We utilize the model developed by Hiraoka et al. [16], which

formulates a generalization of the fundamental Lambert-Beer law.

In this model the spectral reflection of skin (under polarized light)

at pixel indexed by (x,y) is given by

S(x,y,λ ) = exp{−ρm(x,y)αm(λ )lm(λ )
−ρh(x,y)αh(λ )lh(λ )}

(6)

where ρm,h are densities of melanin and hemoglobin respectively

(cm−3), and are assumed to be independent of each other. The

cross sectional areas for scattering absorption of melanin and

hemoglobin are denoted αm,h (cm2) and lm,h are the mean path-

length for photons in epidermis and dermis layers, which are used

as the depth of the medium in this modified Lambert-Beer law.

These quantities are used as well in [15].

(a) Proposed greyscale (b) L of CIE Lab

(c) (d)
Figure 3. (c, d) Histogram of (a, b) respectively.

(a) (b)

(c) (d)
Figure 4. (a) Image of skin lesion; (b) the bottom right corner of (a) contains

healthy skin only; (c, d) Optical density space of (a, b) respectively.

By substituting Eq.6 into Eq.3, and taking logs, we arrive at

a model for skin pixel log-RGB:

logRk(x,y) =−ρm(x,y)σm(λk)−ρh(x,y)σh(λk)

+ log(k1I(x,y)ω(x,y))+
[

log(1/λ 5
k
)−k2/(λkT )

] (7)

where we have lumped terms σm(λk) = αm(λk)lm(λk), σh(λk) =
αh(λk)lh(λk). For notational convenience, denote uk =
log(1/λ 5

k
), ek =−k2/λk, mk = σm(λk),hk = σh(λk). From eq. 7

it is clear that skin pixels lay on a plane in optical density space:

[− logR1,− logR2,− logR3].
Now let us move forward from [15] by making the novel

observation mentioned above. Consider Fig. 4(a) as an exam-

ple; we first extracted the left lower corner of the image which

contains only healthy skin (Fig. 4(b)), and plotted its pixel value

distribution in optical density space. It can be seen from the plot,

Fig. 4(d), that the skin colour plane is wide in one direction and

narrow in the other. We can ascertain the importance of one di-

rection against the other by carrying out Principal Component

Analysis (PCA) on logRk: we find that the first-eigenvector com-

ponent dominates. For the illustrated example, the eigenvalues

were [0.0608,0.0046,0.0005] (the Total Variance Explained by

first component: 0.923). An even more extreme case occurs with

the image containing the lesion: Fig. 4(c) illustrates the optical

density space and distribution of image data as a whole. While it
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(a) (b)
Figure 5. Examples of our segmentation results. Blue border: expert

segmentation, Red border: our segmentation.

may not be visually obvious, by carrying PCA, eigenvalues indi-

cate that the data is distributed mostly along a vector (rather than

a plane): the eigenvalues are [2.8878,0.0434,0.0057] (the Total

Variance Explained by first component: 0.983).

The same observation persists in almost all cases we have

studied. We conclude, therefore, that the first-eigenvector compo-

nent explains most of the image and in particular contains most of

the information for the lesion. Therefore, by keeping the first prin-

cipal component (PC), we obtain a greyscale image that expresses

the lesion and suppresses the healthy skin surrounding it. This ef-

fect can be seen in Fig. 3(a) when compared with Fig. 3(b), the L

component of Lab colour space that is usually used as greyscale

by many researchers. Moreover, our proposed greyscale provides

higher separability between lesion and normal skin. This effect

is illustrated in Fig. 3(c) and (d), where the histogram of our pro-

posed greyscale is compared to histogram of L (of CIE Lab). The

area of the concavity between the two modes of the histogram is

larger for our proposed greyscale. This has a positive contribu-

tion to segmentation algorithms based on grey-level thresholding,

such as Otsu’s [13], as explained in [4]. It is also worth men-

tioning that the third PC contains mostly the image noise [17] and

removing it may have a positive effect (such as de-noising) for the

other processes further down the processing pipeline.

In brief, we propose: a greyscale image can be created by

carrying out principal component analysis on logRk and using the

first-eigenvector component.

4. Experiments and Results
For automatic segmentation of lesions, we found that using

the greyscale image derived according to § 3.1, and in particular

together with our method to attenuate confounding lighting fac-

tors, would produce results as good as or better than the state of

the art [18, 19] for these dermoscopic images, in a much simpler

algorithm (see figure 5 for a few examples).

Here we simply apply Otsu’s method [13] for selecting a

grey-level threshold. Note that Otsu’s method (and also most

commercially available automated systems) fails in segmenting

low contrast lesions [20]. However our approach achieved very

high Precision and Recall, since we discovered that our proposed

greyscale supresses the skin around the lesion.

We tested our method on a dataset of images taken from [21,

22] and used by Wighton et al. [18]. They presented a modified

random walker (MRW) segmentation where seed points were set

automatically based on a lesion probability map (LPM). The LPM

was created through a supervised learning algorithm using colour

and texture properties.

Table 1 shows results for our method compared to results

in [18]. While our method uses a much simpler algorithm and

does not require learning, it achieves comparable results. It is

Img.Set Method Precision Recall F-score

simple MRW on LPM 0.96 0.95 0.95

Otsu on LPM 0.99 0.86 0.91

Our Method 0.94 0.98 0.96

challenging MRW on LPM 0.83 0.90 0.85

Otsu on LPM 0.88 0.68 0.71

Our Method 0.86 0.89 0.85

whole MRW on LPM 0.87 0.92 0.88

Otsu on LPM 0.91 0.74 0.78

Our Method 0.88 0.92 0.89

Table 1: Comparing our segmentation method to the modified

random walker (MRW) algorithm and Otsu’s thresholding, on

lesion probability map (LPM) [18]. The dataset consists of 100

challenging and 20 easy to segment images. An image is con-

sidered challenging if any of the following conditions is true:

“1) the contrast between the skin and lesion is low, 2) there is

significant occlusion by either oil or hair, 3) the entire lesion is

not visible, 4) the lesion contains variegated colours or 5) the

lesion border is not clearly defined” [18]. Note that our method

consistently produces higher F-measures notwithstanding its

simplicity and speed.

Method Sensitivity Specificity

Our Method 0.92 0.88

Multi–layer tree [19] 0.89 0.90

G-Log/LDA [23] 0.88 0.88

KPP [24] 0.71 0.79

DTEA [25] 0.64 0.99

SRM [26] 0.77 0.95

JSEG [27] 0.678 0.99

FSN [28] 0.81 0.93

Table 2: Comparing our segmentation method to the Multi-

level feature extraction method [19], and the output of six other

methods, reported together in [19]. Note that our method has

highest sensitivity whereas its specificity is comparable to

other methods.

worth mentioning, [18] also applied Otsu’s method on their lesion

probability maps. Their result included in Table 1 under ‘Otsu on

LPM’, with results not nearly as good as ours.

We also compare our results with those in [19]. “They pro-

posed a novel tree structure based representation of the lesion

growth pattern by matching every pixel sub-cluster with a node

in the tree structure” [19]. This multilayer tree is employed to ex-

tract sets of features, which are used then, in a supervised learning

framework, to segment lesions. They compared sensitivity and

specificity of their segmentation results with six other skin lesion

segmentation methods. See table 2 and references therein.

5. Conclusions
Automatic analysis of dermoscopy images is subject to error

due to its difficulty and the subjectivity of visual interpretation.

The development of reliable, effective and feature-preserving pre–

processing methods can improve the overall performance.

We have proposed a new pre–processing scheme; a double

component process which succeeds in: i) Normalizing intensity

falloff, as well as attenuating shading and other confounding fac-

tors from dermoscopy images. ii) Colour-to-greyscale conversion

which is aimed at intensifying the separation between lesion and

healthy skin surrounding it. The new greyscale also amplifies the
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underlying structure of lesion.

In the lesion segmentation task, our pre–processing scheme

is shown to improve accuracy of segmentation.

Future work will include examination of the effect of our

proposed greyscale for feature extraction. We would also like to

investigate the effect and possible application of deriving intrinsic

images using entropy minimization aimed at removing artifacts

such as hair in an image.

References
[1] A. Jemal, R. Siegel, J. Xu, and E. Ward. Cancer statistics,

2010. CA: A Cancer J. for Clinicians, 60(5):277–300, 2010.

[2] I. Maglogiannis and C.N. Doukas. Overview of advanced

computer vision systems for skin lesions characterization.

IEEE Trans. Inf. Technol. Biomed., 13(5):721–733, 2009.

[3] H. Iyatomi, M.E. Celebi, G. Schaefer, and M. Tanaka. Au-

tomated color calibration method for dermoscopy images.

The J. of the Compu. Med. Imag. Soc., 35(2):89–98, 2011.

[4] D.D. Gmez, C. Butakoff, B.K. Ersbll, and W. Stoecker. In-

dependent histogram pursuit for segmentation of skin le-

sions. IEEE Trans. Bio-Med. Eng., 55(1):157–161, 2008.

[5] H. Zhou, M. Chen, J.M. Gass, R.and Rehg, L. Ferris, J. Ho,

and L. Drogowski. Feature-preserving artifact removal from

dermoscopy images. volume 6914, pages 69141B–69141B–

9. SPIE, 2008.

[6] T. Lee, V. Ng, R. Gallagher, and D. Coldman,

A.and McLean. Dullrazor: A software approach to hair re-

moval from images. Computers in Biology and Medicine,

27(6):533–543, 1997.

[7] Pablo G. Cavalcanti, Jacob Scharcanski, and Carlos B. O.

Lopes. Shading attenuation in human skin color images. In

Proc. of the 6th Intl. Conf. Advances in visual computing -

Volume Part I, pages 190–198. Springer-Verlag, 2010.

[8] G.D. Finlayson, M.S. Drew, and C. Lu. Intrinsic images by

entropy minimization. In ECCV 2004: European Conf. on

Computer Vision, pages 582–595, 2004.

[9] G.D. Finlayson, M.S. Drew, and B.V. Funt. Spectral sharp-

ening: sensor transformations for improved color constancy.

J. Opt. Soc. Am. A, 11(5):1553–1563, 1994.

[10] P. Soille. Morphological operation. In B. Jahne,

H. Haubecker, and P. Geibler, editors, Handbook of Com-

puter Vision and Applications, volume 2, pages 627–682.

Academic Press San Diego, 1999.

[11] Wladyslaw Skarbek and Andreas Koschan. Colour image

segmentation - a survey. Technical, Institute of Technical

Informatics, University of Berlin, 1994.

[12] A. Criminisi, P. Perez, and K. Toyama. Object removal by

exemplar-based inpainting. In Comput. Vision and Pattern

Recog., 2003. Proc. IEEE Compu. Soc. Conf., volume 2,

pages II–721, 2003.

[13] N. Otsu. A threshold selection method from gray-level his-

tograms. IEEE Trans. on Systems, Man and Cybernetics,

9(1):62–66, 1979.

[14] N. Tsumura, H. Haneishi, and Y. Miyake. Independent-

component analysis of skin color image. J. of the Optical

Soc. of Amer. A, 16:2169–2176, 1999.

[15] N. Tsumura, N. Ojima, K. Sato, M. Shiraishi, H. Shimizu,

H. Nabeshima, S. Akazaki, K. Hori, and Y. Miyake. Image-

based skin color and texture analysis/synthesis by extract-

ing hemoglobin and melanin information in the skin. ACM

Trans. Graph., 22:770–779, 2003.

[16] M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S.R. Ar-

rige, P.V.D. Zee, and D.T. Delpy. A Monte Carlo investiga-

tion of optical pathlength in inhomogeneous tissue and its

application to near-infrared spectroscopy. Phys. Med. Biol.,

38:1859–1876, 1993.

[17] P. Schmid. Segmentation of digitized dermatoscopic im-

ages by two-dimensional color clustering. Med. Imag., IEEE

Trans., 18(2):164–171, 1999.

[18] P. Wighton, M. Sadeghi, T.K. Lee, and M.S. Atkins. A fully

automatic random walker segmentation for skin lesions in a

supervised setting. In MICCAI, pages 1108–1115, 2009.

[19] S. Khakabi, P. Wighton, T.K. Lee, and Atkins M.S. Multi-

level feature extraction for skin lesion segmentation in der-

moscopic images. In Proc. SPIE 8315, 83150E, 2012.

[20] A. Perrinaud, O. Gaide, L. French, J. Saurat, A. Marghoob,

and R. Braun. Can automated dermoscopy image analysis

instruments provide added benefit for the dermatologist? B.

J. of Dermatology, 157(5):926–933, 2007.

[21] G. Argenziano, H.P. Soyer, and et al. ”Interactive Atlas of

Dermoscopy (Book and CD-ROM)”. Edra Med. Pub., 2000.

[22] H.P. Soyer, G. Argenziano, and et. al. ”Dermoscopy of Pig-

mented Skin Lesions.”. Edra Med. Pub., 2000.

[23] P. Wighton, T.K. Lee, H. Lui, D.I. McLean, and M.S.

Atkins. Generalizing common tasks in automated skin

lesion diagnosis. IEEE Trans. Inf. Technol. Biomed.,

15(4):622 –629, 2011.

[24] H. Zhou, M. Chen, L. Zou, R. Gass, L. Ferris, L. Drogowski,

and J.M. Rehg. Spatially constrained segmentation of der-

moscopy images. In 5th IEEE Intl. SYM. on BioMed. Imag.:

From Nano to Macro, 2008. ISBI, pages 800 –803, 2008.

[25] M.E. Celebi, Y.A. Aslandogan, and P.R. Bergstresser. Un-

supervised border detection of skin lesion images. In Intl.

Conf. Inf. Technol.: Coding and Computing, 2005. ITCC,

volume 2, pages 123 – 128 Vol. 2, 2005.

[26] Hitoshi Iyatomi, Hiroshi Oka, M Emre Celebi, Masahiro

Hashimoto, Masafumi Hagiwara, Masaru Tanaka, and

Koichi Ogawa. An improved internet-based melanoma

screening system with dermatologist-like tumor area extrac-

tion algorithm. The J. of the Compu. Med. Imag. Soc.,

32(7):566–579, 2008.

[27] M.E. Celebi, H.A. Kingravi, H. Iyatomi, Y.A. Aslandogan,

W.V. Stoecker, R.H. Moss, J.M. Malters, J.M. Grichnik,

A.A. Marghoob, H.S. Rabinovitz, and S.W. Menzies. Bor-

der detection in dermoscopy images using statistical region

merging. Skin research and technol.: J. of Intl. Soc. for Bio-

eng. and the Skin (ISBS), 14(3):347–353, 2008.

[28] M.E. Celebi, S. Hwang, H. Iyatomi, and G. Schaefer. Ro-

bust border detection in dermoscopy images using threshold

fusion. In 2010 17th IEEE Intl. Conf. Image Process. (ICIP),

pages 2541 –2544, 2010.

20th Color and Imaging Conference Final Program and Proceedings 163




