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Abstract
Measured materials are used in computer graphics to en-

hance the realism of synthetic images. They are often approxi-

mated with analytical models to improve storage efficiency and

allow for importance sampling. However, the error metrics used

in the optimization procedure do not have a perceptual basis and

the obtained results do not always correspond to the best visual

match. In this paper we present a first steps towards creating

a perceptually-based metric for BRDF modeling. First, a set of

measured materials were approximated with different error met-

rics and analytical BRDF models. Next, a psychophysical study

was performed to compare the visual fidelity obtained using dif-

ferent error metrics and models. The results of this study show

that the cube root metric leads to a better perceptual approxi-

mation than other RMS based metrics, independently of the an-

alytical BRDF model used. More benefit of using the cube root

metric compared to the RMS based metrics is obtained for sharp

specular lobes, and as the specular lobe broadens the benefit of

using the cube root metric decreases. The use of the cube root

error metric will improve the visual fidelity of renderings made

using BRDF approximations and expand the usage of measured

materials in computer graphics.

Introduction
Realistic material appearance modeling and rendering is an

important but challenging problem in computer graphics, with

many applications such as movie industry, advertising, video

games, and virtual reality.

Due the complexity of modeling materials empirically, the

data-driven approach has been successfully used in order to im-

prove the representation of those materials, where measured ma-

terials are directly used for rendering. In order to increase storage

efficiency and allow for importance sampling the material mea-

surements are commonly approximated with analytical models.

An error metric is used to guide the optimization procedure

into the best approximation of a measured material. However,

the obtained results do not always correspond with the best visual

match because the error metrics currently used do not have any

perceptual basis.

A similar effect can be seen in color science, where the min-

imization of the RMS spectral difference does not correlate with

the color difference minimization. This result is the consequence

of not taking the observer into account. However, when the ob-

server is considered by using the color matching functions and

a uniform color space, the color difference can be correctly ap-

proximated and minimized. The challenge in this case is that no

perceptual metrics exist to compare measured and approximated

materials.

This paper presents the first steps towards creating a percep-

tually based metric for BRDF modeling. A psychophysical study

was performed to compare the visual fidelity of images rendered

using different error metrics and models for a set of materials.

The results of this study show that the cube root metric leads to

a better perceptual approximation than other RMS based metrics,

independently of the analytical BRDF model used. More benefit

of using the cube root metric compared to the RMS based ones is

obtained for sharp specular lobes, and as the specular lobe broad-

ens the benefit of using the cube root metric decreases. The use of

the cube root error metric will improve the visual fidelity of ren-

derings made using BRDF approximations and expand the usage

of measured materials in computer graphics.

Related work
The BRDF (Bidirectional Reflectance Distribution Function)

is a 4-Dimensional function that describes how light is scattered

by a surface. It is defined by the following equation:

f (ωi,ωo) =
L(ωo)

E(ωi)
(1)

where E defines the irradiance due the light source in the direction

defined by ωi, and L defines the radiance of a surface in the direc-

tion ωo, where the directions are defined in spherical coordinates.

In order to understand which analytic BRDF models best ap-

proximate measured BRDF data, the 100 materials of the MERL

database were approximated with 7 different analytical BRDF

models in [11]. This study provided insights about the expres-

sivity of the different analytical BRDF models. A key aspect in

the approximation step is the error metric selection. In this case,

the objective function used in the optimization step was the min-

imization of the RMS error metric weighted by the cosine of the

incident light direction and the solid angle, in order to compen-

sate for the reflectance increase towards grazing angles and the

measurement sampling. The authors emphasize that the best fit

according to their metric does not always correspond to the best

visual match, which they found to be highly dependent on scene

geometry and illumination.

A method to navigate through a uniform material appear-

ance space was created in [12]. The pixel-by-pixel differences

between synthetic images generated with different BRDF models

were used to create this space. A precomputation step was used to

generate all the images used in an interactive interface to aid the

material design. This technique would probably give a good per-

formance if used as error metric during the optimization process,

but it would require the generation of a synthetic image in each

iteration step of the optimization process, making it computation-

ally expensive.

In [13], a perceptual space of glossy materials represented by

the Ward BRDF model was created. Two perceptual gloss dimen-

sions were defined in this space: contrast gloss and distinctness-

of-image gloss. These dimensions were used to reparameterize
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Figure 1. From left to right, distinctness of image gloss and contrast gloss of the MERL database materials. Materials used in this study are shown in red.

the Ward reflectance model parameters to a perceptually uniform

space. This work is not directly applicable to the creation of an

error metric to compare measured data and analytical models, be-

cause this perceptually uniform space is only defined for materials

represented with the Ward BRDF model.

Overview
In this paper, the perceptual fidelity of different error metrics

commonly used in BRDF modeling is studied. A paired compar-

ison psychophysical experiment with reference was performed to

evaluate the perceptual fidelity of the metrics. The reference was

a rendered image using measured data and the observer was asked

to select the closest approximation to the reference of the two test

stimuli presented in each trial.

Multiple factors influence the visual fidelity of an approxi-

mation, not only the error metric. The materials approximated,

the analytical BRDF models used, the lighting and geometry used

in the evaluation scene, and the optimization procedure are key

elements involved in the approximation and its evaluation.

For that reason, a set of materials and analytical BRDF mod-

els were also studied for each error metric and a scene that maxi-

mized the material discrimination was defined based on previous

perceptual studies.

Stimuli
In this section the different components used to generate the

images used in the psychophysical experiment are described.

Material data set
A set of 10 materials of the MERL Database [9] were used in

this study. This database includes isotropic measurements of 100

materials, including painted surfaces, fabrics, metals, and plas-

tics. It was created by imaging a sphere of a given material lit by

a point light source with a camera for a dense set of incident direc-

tions. For each incident direction, a set of images with different

exposures were merged to obtain an HDR image. This image-

based method allows high angular resolution measurements and

many radiance samples are recored in each image.

The selection of 10 materials used in Vangorp et al. [18] was

used in this study, except for the copper material that was not

found on the database and it was substituted for the nickel. The

material selection spans different types of materials, colors, and

gloss levels (gold metallic paint2, aluminium, blue acrylic, alum

bonze, nylon, nickel, blue metallic paint, pearl paint, light red

paint, and silver metallic paint), a subset of which is shown in the

first row of Figure 3. To visualize the distribution of these mate-

rials, the distinctness of image gloss (DoI) and the contrast gloss

(CG) of the 100 materials of the MERL Database are shown in

Figure 1, where the selected materials are shown in red. The DoI

is computed as the angle between the specular direction at 30◦ and

a measurement at 0.3◦ from the specular direction. This angle is

small for sharp specular lobes, and it increases when the specular

lobe broadens. The perceptual spacing of the selected materials

is well balanced as more materials are selected with small DoI

angles, which is the region where we are more sensitive to (see

Figure 1 left).

BRDF Models
To be able to generalize the fidelity obtained with differ-

ent error metrics, three analytical BRDF models commonly used

in the literature were selected for this study. The Ashikhmin-

Shirley [2] and the Cook-Torrance [3] BRDF models were se-

lected because they are widely used and also provided the best

performance in [11]. The Ward BRDF model [19] was also used

in this study, due to its wide use in vision science and perceptually

based material modeling experiments [5, 13, 18]. The models’

equations presented in [11] were implemented in Matlab to per-

form the optimization process and in the rendering engine used to

generate the synthetic images:

• Ashikhmin-Shirley

K =
m+1

8π

(n ·h)m

(ωo ·h)max((n ·ωi),(n ·ωo))
Fresnel(F0,ωo,h)(2)

where n is the normal direction, h is the half way vector

( ωi+ωo

2 ), and m models the shape of the specular lobe. The

fresnel term is approximated using the Schlicks approxima-

tion [17], which depends on the parameter F0:

Fresnel(F0,ωo,h) = F0 +(1−F0) · (1− (ωo ·h))
5 (3)

• Cook-Torrance

K =
1

π

DG

(n ·ωi)(n ·ωo)
Fresnel(F0,ωo,h) (4)

where the Beckmann distribution is used to represent the

normal distribution probability for the micro-facets, D:

D =
1

α2cos4δ
e−[(tanδ )/α]2 , δ = acos(n ·h) (5)

α describes the surface roughness of the material, and G is

the geometric attenuation term, which describes the masking

and shadowing effects between the microfacets.

G = min

(

1,
2(n ·h)(n ·ωo)

(ωo ·h)
,

2(n ·h)(n ·ωi)

(ωo ·h)

)

(6)
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• Ward

K =
1

√

(n ·ωi)(n ·ωo)
·

e− tan2 δ/α2

4πα2
(7)

where α controls the width of the lobe.

Error Metrics
Error metrics represent the difference between a measured

material and an approximation, as color differences represent the

difference between two colors, and its minimization leads to the

best approximation of a measured material. The error metric is

computed across each pair of incident and outgoing directions for

each color channel for the measured and approximated material.

Three error metrics used in the literature were evaluated in this

study: the root mean square error (RMS), the RMS weighted by

the cosine of the incident direction, and the cube root of the cosine

weighted metric:

• Root mean square (RMS)

E =

√

∑(M(ωi,ωo)−A(ωi,ωo, p))2

n
(8)

• Cosine weighted RMS

E =

√

∑(M(ωi,ωo)cosθi−A(ωi,ωo, p)cosθi)2

n
(9)

• Cube root cosine weighted RMS

E =

√

∑
(

(M(ωi,ωo)cosθi−A(ωi,ωo, p)cosθi)2
)1/3

n
(10)

where the difference between the measured BRDF M and the ap-

proximation A obtained using a given BRDF model with the pa-

rameters p is computed across the n pairs of incident and outgoing

directions.

The RMS is the simpler error metric, in which the distance

between each of the points of the measured data and the approxi-

mation obtained with the analytical BRDF model is computed.

The weighting factor used in the cosine weighted RMS is

added to compensate for the reflectance increase towards the graz-

ing angles when the incident direction goes from the normal di-

rection at 0◦ to 90◦ in θi.

RMS metrics tend to overemphasize the importance of the

BRDF peaks in the mirror direction and deemphasize the off-peak

values. For that reason, the empirically derived cube root metric

is sometimes used for trying to correct this effect.

There is no consensus in the literature about metric selec-

tion, and every researcher tends to apply corrections from their

previous experience. In Ngan et al. [11], the log and cube root

compressive metrics were not used as the authors found that the

specular highlights became too blurry, so they used the cosine

weighted RMS with a solid angle correction term. On the other

hand, Matusik [7] emphasized the need of compression to obtain

a good approximation of glossy materials and used a log func-

tion as error metric. The cube root metric was used in this paper

as the log function behaves badly near zero, and as it has been

commonly used in the literature. The exploration of compressive

metrics with exponents similar to the ones used in gamma func-

tions could be an interesting avenue of future work if those are

found to better model the perception of material differences.

Two major types of corrections are usually applied in the er-

ror metrics: physical and empirical. Physical corrections try to

correct or normalize for physical changes in the light-material in-

Table 1. Starting values, and lower and upper boundaries for

the parameters used in the non-linear optimization procedure.

Ward Cook-Torrance Ashikhmin-Shirley

ρs α m F0 m F0

Starting 0.5 0.01 0.02 0.3 5 0.3

Lower 0 0.001 0.001 0.02 0.001 0.02

Upper 1 0.5 1 1 50000 1

teraction or measurement process. For example, the above men-

tioned reflectance increase towards grazing angles or solid angle

corrections applied for different directions. Empirical corrections

are derived from trial and error, and do not have any physical ba-

sis. For example, the cube root or log compression in the data are

a form of empirical correction.

It’s important to note that no special consideration is com-

monly given to the information from multiple color channels.

Thus, the information of different channels is considered as an-

other set of points in this work, without the use of any color dif-

ference equation. This fact may lead to hue errors that can become

highly perceptible on rendered images.

Fitting BRDFs
A core task of this project is the fitting process, in which the

parameters of a BRDF model are optimized to minimize a given

error metric for a given material. The analytical BRDF model

parameters are highly non-linear and the result obtained depends

on the initial values used for the optimization process.

We used a diffuse lobe and two specular lobes to approx-

imate each measured material. Ngan et al. [11] stated that the

fit quality was much improved with the addition of the second

specular lobe, probably because of the multiple layer finish of the

materials of the MERL database.

The analytical form used to approximate measured materials

is the following:

K = ρd di f f use+
2

∑
i=1

ρs specular(p) (11)

where ρd is the diffuse albedo (RGB scalars), di f f use is a Lam-

bertian lobe, specular is a particular analytical BRDF model

(Equation 2, 4 or 7), ρs is the specular albedo (RGB scalars),

and p are the parameters of the specular analytical BRDF model.

Note that the same analytical BRDF model is used for both spec-

ular lobes, but each specular lobe has different ρs and p.

We used the following optimization technique: First, the dif-

fuse albedo was set using a 45:0 measurement. This helps to in-

crease the stability of the optimization process, as less parameters

need to be optimized. Then, one specular lobe having a single

scalar as a specular albedo and the BRDF model parameters were

non-linearly optimized. The same procedure is then performed

again adding the second specular lobe, and using as initial val-

ues for the first specular lobe the ones previously found. Finally,

the specular albedos are converted from single scalars to RGB

triplets, and are non-linearly optimized while the other BRDF pa-

rameters are kept constant.

The stability of the optimization procedure is greatly in-

creased by adding one specular lobe at a time and by initially

using a single scalar as specular albedo. A single scalar is used
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in order to reduce the number of parameters to optimize, and be-

cause the objects’ highlights are perceived to be of a similar color

to the light source, this is a good first approximation. Later on,

the specific optimization of the specular albedos allows for slight

scale changes for each channel.

The fmincon constrained non-linear optimization MATLAB

routine was used to perform the optimization step. The initial

values, and lower and upper boundaries for each of the parame-

ters optimized were carefully set to span the meaningful range for

each parameter (see Table 1).

Scene description and rendering
To generate synthetic images a material, object, and lighting

need to be defined. In this case, the materials are either the tab-

ulated measured data of the real physical material or one of the

approximations obtained.

In Ngan et al. [11], a sphere and a environment map mainly

composed of colored lights were used to visually evaluate the ren-

dering results. The influence of shape on the perception of mate-

rial reflectance was studied in [18], where the ability to discrimi-

nate if two different geometric objects had the same reflectance or

not was analyzed in a psychophysical experiment. The fact that

every 3D modeling application uses a sphere as a sample material

was one of the reasons driving this work, and the authors found

that the sphere was one of the least discriminating shapes for judg-

ing materials. One of the shapes that gave the best discriminating

accuracy was a blob-like shape, which contained both concave

and convex regions. This blob-like shape was selected for this

study in order to maximize the material discrimination. The Eu-

calyptus Groove light probe from Paul Debevec was used in this

study because it was found to be the environment map with real

world statistics providing the best material discrimination in [5].

This light probe also allows to evaluate the color of an object with-

out the need to perform any chromatic adaptation.

The Physically Based Ray Tracer (PBRT) [14] was used to

generate the synthetic images with a resolution of 400x400 pix-

els. This ray tracer natively supports the format of the measured

materials’ data and takes advantage of parallel execution, which

reduces the computational time required.

The global Reinhard et al. [16] HDR tone mapping operator

was applied to a composite HDR image containing all the im-

ages used in the experiment (parameters: key=0.18, and phi=1.0).

Then, a 2.2 gamma correction was applied to the tone mapped

images. The implementation provided in [6] was used.

Experiments
The perceptual fidelity of images created using different

combinations of materials, models, and metrics were evaluated by

performing a two-alternative forced-choice (2AFC) psychophysi-

cal experiment with reference. The reference was a rendered im-

age using measured data, and the observer was asked to select

the closest approximation to the reference of the two stimuli pre-

sented in each trial. The interface used for the experiment can be

seen in Figure 2.

The first experiment compared each possible combination of

the error metrics and the three analytical BRDF models for each

of the ten materials to the reference image.

The reference image was included in the trial selection in a

second experiment in order to evaluate the distance between the

Figure 2. Interface used for the 2AFC experiment with reference, developed

with Psychtoolbox. The reference image is shown on the top, and the two

approximations are shown on the bottom.

approximations and the measured data. In this case, the approx-

imations obtained with the three analytical BRDF models using

the error metric that gave the best result in the first experiment and

the measured data were compared to the reference image. The

camera position on the reference image was rotated 15◦ around

the object to avoid pixel-by-pixel comparisons by the observers.

A total of 360 trials were done for each of the 15 observers

that participated in the first experiment, and 60 trials were done

for each of the 20 observers that participated in the second exper-

iment. All the observers had normal color vision and normal or

corrected to normal visual acuity.

The experiments were performed in a darkened room with

a controlled viewing conditions on a 30-inch Apple Cinema Dis-

play. Unfortunately, neither the material measurements nor the

environment map were color calibrated, and it was not possible

to obtain colorimetric data to input a calibrated display. Hence,

only the additivity of the display was evaluated, presenting a good

additivity. An avenue of future work would be to obtain accu-

rate colorimetric data for both, the materials and the environment

maps using the technique described in [4], which would allow to

better asses the goodness of the color approximation. A lower

dynamic range display was selected for this experiment to repli-

cate the common viewing conditions in which synthetic images

are visualized.

Results
Fitting

The renderings for 7 of the 10 materials can be seen in Fig-

ure 3. The use of a compressive metric (i.e. cube root) seems to

improve the approximation of high gloss materials over the RMS

based metrics (see bottom row of Figure 3). For low gloss, all the

metrics seem to produce a similar renderings. The RMS based

metrics seem to overfit the specular lobe for high gloss materials.

The blue acrylic material was not well approximated for any com-

bination of error metrics and models, the diffuse component was

approximated well when the compressive metric was used, but the

specular lobe was overfit by the RMS based metrics.

The fidelity of a material approximation is usually evaluated

by showing BRDF plots, with the values given by an error metric,

and rendered images of the measured data and its approximation.

A disconnect exists between the values given by error met-

rics and the visual fidelity of an approximation because error met-
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Figure 3. Reference and approximations obtained for 7 of the 10 materials used in the study using the Ward BRDF model. A better visual fidelity is obtained

with the cube root error metric for high gloss materials, while the RMS based metrics seem to over fit the specular lobe. For low gloss, all the metrics seem to

produce a similar visual fidelity.

rics currently used are not perceptually based. For example, an

approximation that is off in hue can have a lower error value than

another approximation, while the latter may be closer to the mea-

sured material if the rendered images are compared.

a) Reference b) Cosine weighted RMS c) Cube Root
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Figure 4. From left to right, alum-bronze reference material, cosine

weighted RMS, and cube root approximations using the Ward BRDF model.

The second row shows the cube root compressed BRDF plots with the mea-

sured data and its approximations for the green channel and given different

incident directions. The evaluation of an approximation using only the BRDF

plots can be misleading.

BRDF plots are commonly used to evaluate the goodness of

an approximation, where the in-plane measured and approximated

data are displayed. Again, a disconnect exists between BRDF

plots and the visual fidelity of an approximation. Figure 4 shows

the rendered images and the BRDF plots of a reference material

and two approximations. If the BRDF plot is used to evaluate the

goodness of the approximation, the cosine weighted RMS metric

approximation would be selected as best. However, by looking at

the rendered images, it’s clear that the metric providing the best

visual rendering is the cube root, in spite of the differences seen

in the BRDF plots.

Psychophysical experiment

Thurstone’s law of comparative judgment (case V) was used

to derive interval scales given the data from the psychophysi-

cal experiments. The confidence intervals were computed using

the empirical formula derived from Monte Carlo simulations of

paired comparison experiments in [10].

The interval scales obtained for the first experiment with

each material and error metric given a different BRDF model are

shown in Figure 5. The materials are sorted by increasing DoI an-

gle. For the Ward BRDF model (Figure 5a), the cube root metric

is always preferred by the observers in comparison to the RMS

based metrics. The sharper the specular lobe, the more beneficial

the use of the cube root metric is. The confusion seen in the blue-

acrylic material could be explained with different criteria among

observers, where some observers probably gave more weight to

the highlights and others to the diffuse component (see Figure 3).

Once the specular lobe broadens, the benefit of using the cube root

metric decreases, but still better visual fidelity is perceived by the

observers when this metric is used. Without being significant, a

small benefit is observed if the cosine weighted RMS metric is

used in place of the RMS metric for the Ward BRDF model.

The scalings obtained for the Ashikhmin-Shirley and Cook-
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Figure 5. Error metric interval scaling across materials sorted by increasing

DoI angle for the a) Ward, b) Ashikhmin-Shirley, and c) Cook-Torrance BRDF

models.
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Figure 6. BRDF models and measured data (Reference) interval scaling

across materials sorted by increasing DoI angle for the cube root error metric.

Torrance BRDF models are shown in Figures 5b and 5c, respec-

tively. For those BRDF models, the cube root metric is almost

always preferred by the observers. However, this is not the case

for all the materials and some crossovers appear for the lines con-

necting the error metrics performance. The main reason of the

crossovers is the high number of outliers obtained through the op-

timization procedure for those BRDF models. Outliers are those

approximations in which a local minimum was reached by the op-

timization procedure, and are represented with a black rectangle.

A simple technique was used to determine when a local minima

was found: for each approximation performed, the parameters

found for the same material and the same analytical model with

the other error metrics were used with the initial error metric. If

the use of those parameters with the initial error metric produced

a lower error value than the one given in the optimization, a local

minima was found. The reason why outliers were found for the

Cook-Torrance and the Ashikhmin-Shirley BRDF models is prob-

ably because those BRDF models have two parameters that need

to be optimized for each specular lobe, while the Ward BRDF

model only has one parameter to optimize (see Table 1).

The cube root metric was selected for the second experiment

as it was found to give the overall best approximations in the first

experiment. The measured data and the three BRDF models using

that metric were compared against the reference image. The in-

terval scales obtained are shown in Figure 6. The approximations

obtained using the cube root error metric were confused with the

measured data for 5 of the 10 materials studied, 4 materials with

the Ward model, 3 materials with Ashikhmin-Shirley model, and

1 material with Cook-Torrance model. For some materials, the

two former models were able to surpass the Ward model, prob-

ably due the better representation of the increased reflection to-

wards the grazing angles provided by the fresnel term incorpo-

rated in those models. However, the lack of convergence of those

two models did not allow a faithful evaluation of which model

better approximates measured data.
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Discussion
Our key finding is the higher visual fidelity obtained using

the cube root metric compared to the RMS based metrics for the

studied materials. The improvement in visual fidelity using the

cube root metric compared to the RMS based metrics is higher for

sharp specular lobes and decreases as the specular lobe broadens.

The better performance of a compressive metric can be re-

lated to perception, where a similar compression is applied to the

lightness channel in CIELAB, and tone mapping operators com-

press HDR images to be displayed on low dynamic range dis-

plays. It would be interesting to repeat the experiment using a

high dynamic range display, as it is known that limiting the im-

age dynamic range does change the apparent gloss of surfaces

depicted in images [15].

In spite of the similar trends obtained for the Cook-Torrance

and Ashikhmin-Shirley BRDF models, the high number of out-

liers when compared to the Ward model limits the generalization

of the conclusions that can be drawn from our experiments when

other BRDF models are considered. To try to reduce the number

of outliers, a simpler optimization technique was performed: mul-

tiple sets of starting values for the BRDF models’ parameters were

generated either randomly or by using a tabular representation,

and the set of parameters that gave the lowest error was the one

selected. However, the visual fidelity obtained with those tech-

niques and/or the number of outliers obtained were worse than

the obtained with the optimization technique previously stated.

The global optimization technique in [20] could help to avoid the

problems seen while approximating multiple-lobes.

Another approach that we are currently pursuing is the use

of hybrid analytical models [1, 8]. One of the problems with the

approximation of measured data is that the shape of the analyti-

cal BRDF models’ lobes is different from the measured data. A

hybrid analytical model uses a small set of data points of the mea-

sured data to represent the microfacet distribution, which com-

bined with an analytical description of the shadowing and mask-

ing terms and the fresnel function successfully approximates mea-

sured materials. As this model better approximates the shape of

the specular lobe the error metric that would give the best visual

fidelity is probably going to be different than the one obtained for

analytical BRDF models.
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