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Abstract 
This paper describes an effective method for recovering color 

signals from multiband images of a high dynamic range (HDR) 

scene. We note that the color signals in a natural scene have the 

HDR characteristic of luminance level from very dark shadow 

area to highly bright sky. The Wiener estimator can be used for 

estimating spectral-power distributions of the color signals from 

HDR image data. A previous study presented an improved Wiener 

estimator for addressing accurate color signal estimation in HDR 

scenes. However, the previous method required the pixel-by-pixel 

estimation of parameters contained in the Wiener estimator, which 

resulted in requiring much computation time. For fast 

computation, therefore, we propose a lookup-table-based (LUT-

based) estimation method for color signals in HDR scenes. In the 

preliminary stage in advance of color signal estimation, we 

prepare LUT of the statistical matrix needed in the Wiener 

estimator, consisting of the covariance matrix of color signals and 

imaging noises. In the stage of color signal estimation, the 

estimates are obtained pixel by pixel by the Wiener estimator with 

the most suitable matrix selected from the LUT. For validating the 

proposed method, experiments are conducted using actual HDR 

scenes. Experimental results show the superiority of our method in 

computation time to the previous methods, with keeping estimation 

accuracy. 

Introduction 
Spectral analysis of a variety of color signals in a natural 

scene is definitely one of the most important research problems in 

the recent color image science and technology [1-5]. This problem 

often includes (1) acquisition of high dynamic range (HDR) 

spectral images in outdoor natural scenes and (2) estimation of 

color signals from the image data [6]. Color signals of incident 

light into an imaging system consist of the direct spectra of light 

sources and the indirect spectra of the reflected lights from 

different object surfaces in a scene. The color signals in an HDR 

scene have the wide range of luminance level from very dark 

shadow area to highly bright sky. Therefore the problem of color 

signal reconstruction requires an HDR technique [7]. 

So far many estimation methods were proposed for estimating 

the color signals from image sensor outputs [8–11]. The Wiener 

estimator is well known and widely utilized for recovering spectral 

information from noisy observations. This estimator requires prior 

statistical parameters such as the covariance matrix of spectral 

dataset and the covariance matrix of imaging noise. These 

statistical parameters significantly affect the estimation accuracy. 

Therefore there were many attempts to determine suitably the 

statistical data in advance [12–18]. 

Most of the previous works addressed the spectral estimation, 

not in HDR scenes but in limited dynamic range scenes or low 

dynamic range (LDR) scenes. Therefore it should be noted that the 

same estimator with fixed statistical parameters was applied to 

every pixel of the entire image in a natural scene. On the other 

hand, HDR scenes contain a huge difference in pixel values. So the 

statistical parameters should be determined dependently on the 

luminance level of the scene. For instance, the covariance matrix 

of color signals is determined using two databases of surface-

spectral reflectances and light source spectra. Also the noise 

characteristics in HDR images are significantly different from the 

ones in LDR images. Then, the spectral databases and the imaging 

noise are suitably determined for HDR images. In 2011, Hirai et al. 

proposed a method for determining the statistical parameters of 

imaging noises and color signal dataset in order to estimate 

accurate color signals in an HDR scene [19]. They determined the 

suitable statistical parameters pixel by pixel, and applied them to 

the Wiener estimator. However, the previous method required 

much computation time because of the pixel-by-pixel parameter 

determinations. 

The present paper describes a fast and accurate method for 

recovering color signals in HDR scenes. Our method is based on 

the lookup-table-based (LUT-based) Wiener estimation. In 

advance of color signal estimation, the suitable statistical 

parameters of imaging noises and color signal dataset are 

preliminarily calculated and stored in the form of LUT. In the 

estimation stage, a color signal in each pixel is recovered by using 

a suitable estimation matrix in the LUT. Finally, the feasibility of 

the proposed method is examined in real HDR scenes. 

Wiener Estimation for HDR scenes 
An improved Wiener estimator was presented for HDR scenes 

[19], where the noise parameters were obtained by a imaging noise 

model of HDR images. The previous paper also determined 

luminance scale and color temperature for suitable color signal 

database. Color signals were then recovered pixel by pixel by the 

original Wiener estimator with the covariance matrix of the 

suitable color signal dataset and the covariance matrix of the 

estimated imaging noises. The pixel-by-pixel estimation method in 

the previous study is briefly described below. 

Original Wiener Estimator 
The image sensor outputs are modeled as a following linear 

system. 
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where E(λ) denotes the incident color signal into an imaging 

system, and Ri(λ), si and σi are the spectral sensitivity function, the 

noise-free signal component, and the imaging noise of the i-th 
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sensor, respectively. x is the spatial coordinates on an image. Then 

we can rewrite Eq.(1) in a matrix form: 

,

= +

= +

ρ Re σ

s σ
                                                                           (2) 

where e denotes the n-dimensional vector representing the color 

signal E(λ) when sampling spectral functions at n points in the 

visible wavelength of [400, 700nm]. Also R is a diagonal matrix 

with the size of m x n for the spectral sensitivity function, ρ is the 

m-dimensional sensor output, σ is the m-dimensional noise vector,  

and s is a m-dimensional signals. 

When color signal e and noise σ are uncorrelated, the 

estimated color signal ê  is given by 
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where e is an average color signal of dataset, Css is the covariance 

matrix of color signal dataset and Σ is the covariance matrix of 

imaging noises as follows. 
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In the estimation, we can assume that the noises in each spectral 

channel are statistically independent. In this case, the covariance 

matrix of noises is reduced to be diagonal as 
2 2 2
1 2 6diag( , ,..., ).σ σ σ=Σ                                                           (5) 

From Eq. (3), we can see the Wiener estimator is mainly 

characterized by three matrices: R, Css and Σ. In general, R and Σ 

are fixed for the imaging system. Css is usually calculated from 

color signal dataset. In the previous study, as described in the later 

sections, the Css and Σ are suitably determined pixel by pixel. 

Noise Estimation of HDR Images 
In the previous study, a noise model of HDR images is 

constructed by measuring the noise characteristics of raw image 

data captured by a linear system. First, the study showed the noises 

of raw LDR images have linear characteristic to signal components. 

We note that HDR images can be acquired by replacing the 

saturated pixels of long exposure images with the ones of short 

exposure images (See also later section “HDR Image Synthesis”). 

In this process, the pixel values of a short exposure image are 

multiplied by the ratio of the exposure time. This process means 

that, in the HDR image synthesis, the noise levels increase as well 

as the sensor outputs. Based on this observation, the previous work 

provided the linear noise model for HDR images as follows. 

,i i tsa c bσ = +                                                                       (6) 

where a and b are the coefficients of the linear noise model, and ct 

is the ratio of the exposure time which used in HDR image 

synthesis. Then by using Eqs.(1) and (6), the noises of HDR 

images can be rewritten as follows. 
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Then the estimated noises in an HDR image ˆ
iσ  can be calculated 

from the sensor outputs by the following equation. 
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Finally, the following noise covariance matrix for a pixel of an 

input HDR image is calculated and applied to the Wiener estimator. 

2 2 2

1 2
ˆ ˆ ˆ( , ,..., ).idiag σ σ σ=Σ                                                     (9) 

Suitable Color Signal Dataset for HDR Scenes 
The accuracy of Wiener estimation depends on color signal 

dataset [14, 18]. In general, color signal database is generated by 

multiplying the surface-spectral reflectances and the illuminant 

spectra. However, in HDR scenes, the illuminant power scale and 

the color temperature significantly affect sensor outputs. Then the 

previous work acquired the suitable illuminant scale and color 

temperature in each pixel, and applied them for generating the 

suitable covariance matrix of color signal dataset, Css, as follows. 
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where cs is the suitable illuminant power scale, and Es is the 

illuminant spectra of suitable color temperature. r and r  denote 

the reflectance database and its average.
 

LUT-based Color Signal Estimation 
The previous method determined the suitable parameters pixel 

by pixel, then the much computation time is required. On the other 

hand, we obtained the suitable parameters in the preliminary stage. 

Figure 1 shows the overview of our color signal estimation. In the 

preliminary stage in advance of color signal estimation, we prepare 

a possible dataset of xy chromaticity coordinates of color signals 

using the databases of surface-spectral reflectances and illuminant 

light sources. Then an input multiband HDR image is clustered 

based on the luminance level and the chromaticity coordinates. 

Then by using the representative luminance and chromaticity of 

each cluster, the statistical matrix needed in the Wiener estimator,  

 

 

 

(a) Preliminary stage 

 

(b) Color signal estimation stage 

Figure 1. Overview of our LUT-based color signal estimation. 
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consisting of the covariance matrices of the color signals and the 

imaging noises, is determined in each cluster. The whole set of the 

statistical estimation matrices for the input HDR image is stored in 

the form of LUT. In the estimation stage, a color signal in each 

pixel is recovered by using a suitable estimation matrix in the LUT. 

In the following section, we describe the details of the proposed 

method from image acquisition to color signal recovery. 

Imaging System and HDR Image Synthesis 
We use an imaging system for capturing multiband images, 

and a spectro-radiometer for directly acquiring illuminant spectral-

power distribution in a particular region of a scene. The imaging 

system consists of a trichromatic digital camera and two color 

filters.  The camera is a Canon EOS 1Ds Mark II with the linear 

response characteristic and the bit depth of 12 bits. The two 

additional color filters with different characteristics of spectral 

transmittance are used for multi-spectral image acquisition. By 

combining these color filters to the camera sensitivities, we can 

obtain six-band images. Figure 2 shows the overall spectral 

sensitivity functions of our imaging system. In our actual 

calculation, we sample all spectral functions at 61 equally 

wavelength points in visible range of [400, 700nm]. 

An HDR image is acquired conveniently by combing multiple 

LDR images captured at different exposure times [7]. Since our 

imaging system has linear response characteristics, the sensor 

outputs (pixel values) ρ  at two different exposure times satisfy a 

relationship as 
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where 
(1)tρ  and 

(2)tρ  are the sensor outputs at exposure times t(1) 

and t(2). Based on this relationship, an HDR image can be 

obtained from LDR images as follows. 
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where τ  is the threshold for clipping saturated pixels, h is the 

number of LDR images, and t is exposure time ( ( ) ( )1t t h> >L ). 

In later experiments, we set τ = 3500. 

 

 
Figure 2. Spectral sensitivity functions of the six-band imaging system. 

   
(a) Reflectances                                (b) Light sources 

Figure 3. Spectral function databases. 

Color Signal Database 
Figure 3(a) shows a set of our 1378 surface-spectral 

reflectance dataset for natural objects and artificial objects. Figure 

3(b) shows an illuminant database consisting of nine light sources, 

which are the CIE standard spectral-power distributions of 

daylights with different correlated color temperatures from 5000K 

to 10000K [20] and the measured spectral-power distribution of 

daylight by using the spectro-radiometer. 

Color signal dataset is generated by multiplying the surface-

spectral reflectances and the illuminant spectra. Then, we obtain 

the color signal database with the size of 1378 x 9 color signals. 

Also we calculate xy chromaticities of the whole color signals for 

generating suitable color signal dataset (See later section 

"Generating Lookup-table of Estimation Matrix"). 

Clustering using Luminance and Chromaticity 
We employee luminance and chromaticity in CIE xyY color 

space for the clustering. As described in the previous section, 

noises of an HDR image are depended on the sensor outputs. In 

other words, scene luminance level is important to determine a 

suitable noise covariance matrix in the Wiener estimator, because 

scene luminance is significantly related with sensor output levels. 

Also, for determining suitable color signal dataset, it is required to 

select suitable samples from the whole set of color signal database. 

We can assume that if a color signal of an input pixel is similar to 

one in the database, the xy chromaticity of the input pixel is also 

similar to the one of in the database. Then, we select suitable color 

signal samples by using xy chromaticity. 

First, we convert an input six-band HDR image to an image 

on the CIEXYZ color space as follow. 
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where x , y , and z are the 1 x 61 vector representations of the color 

matching functions. Then, xyY values of the image are calculated.  

 In our study, we cluster the input image not in xyY three-

dimensional space, but Y and xy space, separately. This is because 

the proposed method should ensure suitable noise covariance 

matrices which are determined based on suitable scene luminance 

levels. If we cluster the input image in xyY three-dimensional space, 

we have possibility that suitable scene luminance levels cannot be 

acquired by the clustering. In the clustering using luminance 

information, the input image is clustered based on equally-spaced 

Y values. In this process, the image is segmented into L clusters, 

and each luminance cluster is identified by a label l (l = 1, …, L). 
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In the clustering based on chromaticity, we applied k-means 

clustering for the xy chromaticities of the input image. In this 

process, the image is segmented into K clusters, and each 

chromaticity cluster is identified by a label k (k = 1, …, K). As a 

result, an input image is clustered into the L x K clusters, and each 

cluster is identified by a label (l, k). 

Generating Lookup-table of Estimation Matrix  
Determination of a noise covariance matrix in each cluster: For 

calculating the suitable imaging noises in each cluster, we applied 

average sensor outputs in a cluster to Eq.(8) as follows. 

 ( )
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,
ˆ ,

1

l k
l k i t

i
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a

ρ
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+
=

+
                                                           (14) 

where the index (l, k) denotes a cluster decided by a luminance 

cluster l and a chromaticity cluster k, respectively, and 
( ),l k

iρ  is a 

average sensor output in the cluster (l, k). In our actual imaging 

system, the coefficients a and b are set as 0.011 and 4.35, 

respectively. Then, by using Eqs.(9) and (14), we acquire the 

suitable noise covariance matrix  ( ),l k
Σ  in the cluster (l, k). 

Determination of suitable color signal samples in each cluster: 

As shown in the previous section, we obtained the color signal 

database with 1378 x 9 color signals. We also calculated xy 

chromaticities of the whole color signals in the database. We 

assume that if a color signal of an input pixel is similar to one in 

the database, the xy chromaticity of the input pixel is also similar 

to the one in the database. Here we calculate the Euclid distances 

of xy chromaticities in a chromaticity cluster l. 

 ( ) ( )2 2

,k d k dE x x y y= − + −                                                 (15) 

where xk and yk

  denote the representative xy chromaticity in the 

cluster k, and xd and yd denote a xy chromaticity calculated from 

the color signal database. A previous work indicated 50 samples 

are enough for generating the covariance matrix of spectral dataset 

[14]. Therefore, for determining a suitable color signal dataset ek in 

each cluster, based on Eq.(15), we calculate the distances E 

between a xy chromaticity of a cluster k to all xy chromaticities in 

the color signal database. Then we select 50 color signals from the 

color signal database with 1378 x 9 color signals. 

In HDR scenes, the color signal power scale is also important 

[19]. Then it is necessary to determine the suitable power scale. 

For the determination in each cluster (l, k), the scale suited to the 

sensor outputs is determined by the following procedure. 
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where 
( ),l k

sc is a factor for adjusting the color signal power scale in 

the cluster (l, k), k
e is the average vector of suitable color signals 

in the cluster k, and ( ),l k

aρ  is the average actual sensor output vector 

in the cluster (l, k). 

The scale factor 
( ),l k

sc  and the suitable color signal dataset 
k

se  

are determined by the above procedure and applied for generating 

the covariance matrix. 
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Lookup-table for color signal estimation: Finally, the estimation 

matrix ( ),l k
W  in each cluster is calculated as follows. 

 ( ) ( ) ( ) ( ), , , , 1
ss ss
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Then the L x K  estimation matrices ( ),l k
W  are stored in the form of 

LUT for an input HDR image. Also for the estimation stage, and L 

x K average color signals ( ),l k

se in whole clusters of an input image 

and their labels are stored in the LUT. 

Color Signal Estimation using Lookup-table 
In the color signal estimation stage, input pixels are estimated 

by Eqs.(3) and (18). 
( ) ( ) ( ), , ,ˆ ( ).
l k l k l k

s s= + −e e W ρ Re

                                            

(19) 

In this process, a label of each pixel is used for selecting a suitable 

estimation matrix in the LUT. 

Experiments 

Experimental Setups 
We used two HDR scenes shown in Fig.4, which include 

indoor and outdoor HDR scenes. HDR images are synthesized 

from the LDR images captured using the six spectral band imaging 

system described in the previous section. For measuring 

computation time properly, we resize the images to 100M pixels.  

The red points and squares in the images are the measurement 

spots by using the spectro-radiometer. The number of measurement 

spots in Fig.4(a) and (d) are 35 and 9 points, respectively. We also 

prepared a white reference in the scene and measured the spectra. 

Results 
First, as shown in Table 1, we investigate relationships among 

the accuracy, the computation time and the number of clusters. The 

upper side of each cell denotes the normalized root mean square 

error (NRMSE), and the bottom side denotes the computation time. 

NRMSE is given by 

( )
( )
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ˆE
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E
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=
e e

e
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In general, CIELAB color difference is used for evaluating color 

accuracy. In this calculation, reference white is required. However, 

when using white reference in HDR scenes, CIELAB color 

difference often becomes very large values, and it is difficult to 

properly understand the color estimation accuracy. Therefore, we 

used NRMSE instead of CIELAB color difference. Our computer 

consists of 64bit-Linux OS, Core i7 990X, and 24GB memory. As 

shown in Table 1, L = 15 and K = 10 are enough for accurate 

estimation. On the other hand, the computation time are not 

significantly depended on the number of clusters. Therefore, in the 

next experiments, we set L = 20 and K = 15. 

 

 

  
(a) Scene #1                                        (b) Scene #2 

Figure 4. HDR scenes prepared in our experiments. 
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Next, for confirming the estimation accuracy of the proposed 

method, we implemented the two conventional estimation methods. 

One is the original Wiener estimator and the other is the previous 

improved Wiener estimator for HDR scenes [19]. In the original 

Wiener estimator, the noise is set at SNR = 40dB. Table 2 shows 

the comparative results between conventional and proposed 

methods. From these results, the estimation accuracy of the 

proposed method is approximately same as the previous method 

[19]. Also the computation time of the proposed method is 

approximately same as the original Wiener estimator, and much 

faster than the previous method [19]. Figure 5 and 6 show the 

measured and the estimated color signals of Fig.4(b). As shown in 

Fig.5 and 6, the proposed method can reproduce the accurate 

scales of color signals in HDR scenes. 

Table 1. Results of our proposed method when changing the number of clusters. 

 L = 5 L = 10 L = 15 L = 20 

K = 5 
0.323 0.292 0.289 0.287 

88.9 (sec) 89.5 90.5 90.9 

K = 10 
0.301 0.269 0.263 0.260 

89.3 89.8 91.2 91.4 

K = 15 
0.281 0.248 0.246 0.247 

89.7 90.2 91.1 91.6 

K = 20 
0.275 0.247 0.244 0.244 

90.1 90.8 91.5 92.1 

Table 2.  Comparative results between conventional and proposed methods.  

 Original Previous [19] Proposed 

NRMSE 0.415 0.236 0.244 

Computation 

time (sec) 
50.8 

Approximately 

7500 
91.5 

 

 

 
(a) Ground truth (measurement data)          (b) Original Wiener estimator        

 
          (c) Previous estimator [19]                     (d) Proposed estimator 

Figure 5. Ground truth and estimated color signals of Fig.4(b). The figures are 

shown in wide horizontal axis scale. Red lines show the color signals of white 

reference which is utilized for normalizations. 

 
(a) Ground truth (measurement data)          (b) Original Wiener estimator        

 
          (c) Previous estimator [19]                     (d) Proposed estimator 

Figure 6. Ground truth and estimated color signals of Fig.4(b). The figures are 

shown in narrow horizontal axis scale, compared to Fig.5. 

Conclusions 
This paper has described a LUT-based method for addressing 

fast and accurate color signal recovery in HDR scenes. In our 

method, the suitable statistical parameters in  the Wiener estimator 

are calculated in advance of color signal estimation. In the 

preliminary stage, an input multiband HDR image is clustered 

based on luminance levels and chromaticity coordinates. Then, the 

statistical matrix consisting of the covariance matrices of color 

signals and imaging noises is determined by using the 

representative luminance and chromaticity of each cluster. The 

whole set of the statistical estimation matrices for an input HDR 

image is stored in the form of LUT. In the estimation stage, a color 

signal in each pixel is reconstructed by a suitable estimation matrix 

in the LUT. For validating our method, we conducted the 

experiments of the color signal estimations in actual HDR scenes. 

The experimental results showed the proposed method can provide 

fast and accurate color signal recovery, compared with the 

conventional estimation methods. 

The proposed method has some parameters related with 

estimation accuracy: the number of luminance and chromaticity 

clusters, and the number of suitable color signals selected from the 

database. These parameters will be significantly influenced by 

scene dynamic range and contents. Therefore we would like to 

investigate the parameters of the proposed method in various 

scenes. 
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