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Abstract
There are many methods for converting a colour image to

a grey scale counterpart. The luminance image can be calcu-
lated as a weighted sum of R, G and B. However, when equilu-
minant edges appear in images, they disappear in the greyscale
reproduction. Alternate greyscale computations attempt to mit-
igate this problem by finding the best solution according to an
optimisation criterion. Optimisations include best representing
the colour difference in grey scale or maximising the variance of
the greyscale reproduction. A promising previous approach pro-
posed maximising the contrast of a greyscale reproduction subject
to the constraint that the brightness was preserved (i.e. the grey
scale reproduction would have the same brightness as the colour
original). The required greyscale was found using a quadratic
programming optimisation. While this made the algorithm simple
to describe it limited its practical utility (e.g. it is unlikely to get
QP implemented in a digital camera). The main result of this pa-
per is to show that there exists a closed form solution for finding
the maximum contrast and brightness preserving greyscale.

As in the previous work, we define that a greyscale is a
weighted sum of R, G and B, and that resulting greyscale has
the same average as the colour original. We propose that the
individual weights should be between 0 and 1 and their sum is
equal to 1 (this constraint appeals to our notion of reasonable-
ness and ensures white is preserved). These constraints coupled
with our requirement that brightness is preserved is interpreted
geometrically. We show that the vector of 3 weighting factors
must lie on a line segment and that the best solution is always
at one of the endpoints. It is straightforward to directly solve
for these endpoints and so directly solve the maximum contrast
brightness preserving greyscale problem.

Introduction
The simplest method for colour to greyscale conversion is

the simple weighted summation:

L(x,y) = αR(x,y)+βG(x,y)+ γB(x,y) (1)

where R,G and B represent the red, green and blue channels

and α,β and γ are their weightings respectively such that:

0 ≤ α ≤ 1 0 ≤ β ≤ 1 0 ≤ γ ≤ 1 (2)

subject to the constraint:

α +β + γ = 1 (3)

Here we assume that the RGB image is linear.

The constraints in (3) provide a reasonable definition of

greyscale (a weighted sum where the sum of the weights is 1).

One of the properties this greyscale transform defines, is that

(1,1,1) white maps to 1 on the output (and this will have maxi-

mum brightness).

If we are in, for example, linear sRGB space [2] there is a de-

fined α=0.2126, β=0.7152, γ=0.0722 which maps the RGB’s to

luminance. The luminance image is clearly a reasonable choice

for colour to greyscale conversion. However, greyscale conver-

sion based on luminance values at each pixel can be prone to a

loss of information where pixels with differing chromaticities but

identical luminances will appear – post conversion – as the same

shade of grey. This observation, in part, has been the genesis of

a large body of work that attempts to find a better way for con-

verting colour into greyscale. ‘Better’ might mean that the colour

differences in the original image are reflected in the greyscale re-

production (e.g. Gooch [7]). Alternatively, Bala [3] simply adds

a chroma-type edge mask to the luminance image (ensuring that

equiluminant edges do not disappear). However, there are sev-

eral algorithms reported that attempt to maximise contrast in the

greyscale reproduction (including Alsam [1] and Qiu et al. [10])).

Significantly, Connah et al. [4] investigated how a simple

luminance encoding compared, from a preference standpoint, to

other colour to greyscale algorithms. Given a set of algorithms

– comprising Alsam [1], Grundland [8], Socolinsky [12], Rasche

[11] and Bala [3] – Connah et al. found that one of these algo-

rithms was always preferred to luminance.

In this paper, we build on the work by Qiu et al. [10]. That

work addresses the contrast question head on, and presents a com-

putational algorithm that delivers a greyscale image which for a

fixed overall brightness has maximum contrast. They formulate

the greyscale conversion problem as a quadratic program. The

objective is to maximise the global contrast (a quadratic concept)

subject to the linear constraint that global brightness is preserved.

Unfortunately, quadratic programming (QP), though indubitably

an extremely powerful optimisation method, is a complex algo-

rithm. The main technical contribution of this paper is to show

how we can solve the maximum contrast brightness preserving

greyscale using simple analytical calculations.

In our approach we suppose that the created greyscale must

be reasonable (it must follow Eq. (1)). That is the sum of the co-

efficients is 1 and each coefficient is larger than 0 and less than 1.

We seek a greyscale where brightness is preserved which implies

that the mean of the generated greyscale is the same as the mean

of the original colour image. This is a second linear constraint on

the coefficients we seek:

αμR +β μG + γμB = μg, (4)

where μR, μG and μB are the respective means of the R, G and
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B image channels. The right-hand side of the equation μg (is the

mean of the original colour images i.e. sum up all of the N×M×3

pixel values and divide by 3NM).

Mathematically, each linear equation (3) and (4) restricts the

vector of coefficients [α β γ] to lie on a plane. Since we have

two linear constraints we have two planes and the coefficient vec-

tor must lie on the intersection of the two (e.g. a line). The greater

than 0 and less than 1 constraints further restricts the solution set

to lie on a line segment. We show that the maximum contrast so-

lution is at one of the endpoints of this segment. Simple algebraic

methods can be used to find the line segment and its endpoints.

So, it is a simple matter to find the maximum contrast greyscale

that preserves brightness.

By definition our method provides the same images as cal-

culated by Qiu et al.’s QP algorithm [10]. We calculate greyscale

outputs for some of the standard images used in the literature to

evaluate the effectiveness of our algorithm. These reproductions

are compared with the outputs of competing methods. Overall,

our images have more contrast than the antecedent methods.

Background
It is immediate that in generating a greyscale image we are,

fundamentally, reducing a 3-dimensional colour image to a 1-

dimensional counterpart. Principal component analysis is the nat-

ural way of achieving such dimension reduction. For example,

Alsam proposed to use PCA as a tool for generating greyscales

[1]. The (non mean subtracted) covariance matrix (properly called

the Raw Cross Product Matrix) of the colour image is calculated.

The direction in colour space which has maximum variance (the

first principal component direction) is found, and projecting the

colours onto this axis results in a base greyscale image.

Alsam et al. [1] acknowledged that maximising variance

alone did not guarantee that colour edges in the original image did

not disappear in their reproduction. Thus an edge map computed

from the colour original is superimposed on their base image.

In separate work, Bala et al. [3] also calculates a colour edge

map and superimposes this onto the standard luminance image.

(In Bala et al.’s work, effectively, the base image is always the

luminance image).

Grundland and Dodgson [8] use a novel projection-based di-

mension reduction approach which they call ‘Predominant Com-

ponent Analysis’. The image is converted to YIQ space where the

luminance space Y, and the chrominance space IQ can be sepa-

rated and treated differently. They use the calculated ’chromatic

and luminance differences’ to define a predominant chromatic

axis, which is then used as a basis onto which the chromatic dif-

ferences are projected. This essentially transforms the IQ space

into a single chromatic channel. This channel is then weighted

and added onto the luminance channel thus producing a greyscale

image.

Rasche, Geist and Westall [11] developed a contrast preserv-

ing algorithm that maintains luminance consistency expressed in

terms of a constrained, multidimensional scaling (MDS) prob-

lem. Effectively, their method exploits the idea that a distance

matrix can be computed for every colour in an image to every

other colour. MDS is a means of finding a 1-dimensional repre-

sentation such that the 3-d distances are preserved in the reduced

space .

An elegant, local, contrast encoding algorithm for colour to

greyscale was developed by Socolinsky and Wolff [12]. Their key

insight is to show that the 3 colour derivatives in an image can

be approximated by greyscale equivalent derivatives. That is the

three x and y derivatives (one per channel) can be replaced by

single approximate x and y derivatives (for the interested reader

this is done using Di Zenzo’s colour tensor decomposition [5]).

The Socolinsky and Wolff grey scale is found by reintegrating

these equivalent derivatives. Since the calculated derivatives may

not actually correspond to any real image, the optimal solution

is found by solving a Poisson’s equation (i.e. choosing the image

whose derivatives are closest to the ones we seek).

The recovered images in a strong mathematical sense are

similar to the colour original. A disadvantage of Socolinsky and

Wolff’s approach [12] is that the recovered images can have gra-

dients which were not in the original (the recovered images often

suffer from bending and smearing artefacts).

Gooch and coworkers [7] have developed a local colour to

greyscale that bears resemblance to Grundland and Dodgson’s

work [8], in that they split up their luminance and chrominance

image information after converting it to a colour space (CIE

L*a*b* in this case). The luminance and chrominance are used to

set a target difference, which is then used in defining a quadratic

objective function for finding their brightness image which they

solve using standard techniques.

To some extent all the algorithms reviewed above change

and generally enhance the contrast of the greyscale reproduction

(compared to luminance). Yet, Qiu et al. [10] observed that these

algorithms also change the image brightness. An image I that is

multiplied by a scalar k (and assuming the resulting image has no

clipped values) will have higher brightness but also higher con-

trast (at least as it is generally defined with respect to colour

to greyscale computation). This led Qiu et al. [10] to novelly

consider maximising contrast while maintaining the reproduction

brightness.

The problem has a natural QP formulation since contrast is

defined as image variance (squared or quadratic), and the idea that

brightness is preserved is a linear constraint. Significantly, the

added constraint of preserving brightness can result in dramati-

cally different images than when this constraint is not enforced,

and, informally at least, the reproductions have more image con-

trast. Unfortunately, QP is a complex computer algorithm, and

so, although this algorithm provides compelling reproductions, it

is not easily implementable (e.g. in an embedded device).

In Qiu et al.’s approach [10] contrast is defined to be the

variance of the greyscale reproduction which can be computed

directly from the covariance matrix Σ of the colour original:

Σi, j = E[(Qi −μi)(Q j −μ j)] i, j ∈ {R,G,B} (5)

Here E is the expectation operator, Qi is a pixel value in a

given channel and μi is the mean of that channel.

To ease the mathematical formulation we represent the

weighting coefficients as a vector and define the auxiliary vectors

u and μ:

vt = [α β γ], ut = [1 1 1], μt = [μR μG μB] (6)

where the superscript t denotes a vector transpose.
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We can now write the contrast maximising and brightness

preserving greyscale problem as a quadratic optimisation with lin-

ear constraints:

ma
v
x||vtΣv|| s.t. vt ·u = 1 & vt ·μ = μg (7)

In Qu et al.’s original paper [10], this problem is solved using

quadratic programming which is a general search based algorithm

guaranteed to find the global optimum. A full description of QP

can be found in any non-linear programming text [9].

A Closed Form Solution
Given the quadratic programming formulation in (7) we will

now show how we can solve for the greyscale that maximises con-

trast and at the same time preserves brightness (see QP in Eq. (7)).

Our aim is to do this without using the heavy and computation-

ally cumbersome tool of quadratic programming. We formulate

the problem in such a way that a natural closed form solution

presents itself.

We illustrate our argument somewhat informally by appeal-

ing to the inherent geometry of the problem. A detailed and for-

mal proof is presented in a companion paper. However, the inher-

ent geometry is really quite simple and so by drawing a few well

chosen figures we can effectively derive our result.

First we return to Eq. (2). Here we capture the notion that in

forming a linear sum of R, G and B to form a greyscale that the

coefficients are bigger than 0 and less than 1. Thus the coefficient

vector (which we denoted v in (6)) must lie inside the unit cube,

see Figure 1(a).

The idea of reasonable linear combination is defined in (3)

i.e. the idea that the total of the weights must sum up to 1. If this

were not the case, a white response triplet in the greyscale would

be mapped darker or brighter than white. In the former case the

resulting image would appear lacking in contrast and dull. In the

latter we would have greyscale values we could not display. Eq.

(3) in fact is the equation of a plane in coefficient space. We can

define a plane given knowledge of 3 points that lie on the plane.

Setting two of the three coefficient vectors to zero we find that

(1,0,0), (0,1,0) and (0,0,1) must all lie on the plane. At the same

time the part of plane we are interested in must lie inside the unit

cube. This gives us the triangular region shown in Figure 1(b). In-

terestingly, by appealing to the reasonableness of the linear com-

bination forming a greyscale, we already greatly restrict where

our coefficient vector must lie.

The global mean i.e. the sum of all N, red pixels + N green

pixels + N blue pixels (divided by 3N) is our definition of the

brightness that must be preserved. Eq. (4) relates the global mean

to the means in each of the red, green and blue channels. Eq. (4)

is again an equation of a plane where the coefficient vector that

we seek must lie. We illustrate a possible plane in Figure 1(c)

(the orientation of which is defined by the relative means of the

original colour image). Again we have a triangular region because

we need to enforce the constraints that the coefficients lie between

0 and 1.

That our greyscale image is reasonable and that the global

means are preserved implies that the coefficient vector we seek

must, simultaneously, lie in both planes. The intersection of two

planes is a line. For our example the plane intersection is shown

in Figure 1(d). It is clear that the dotted line segment delimits all

possible solutions to our brightness preserving grey scale prob-

lem.

Suppose we denote the coefficient vectors for the endpoints

of this line as x and y. Then the contrast for any point on the line

between these points can be written as:

contrast = vtΣv s.t. v = ρx+(1−ρ)y, ρ ∈ [0,1] (8)

contrast = ρ2xtΣx+2ρ(1−ρ)xtΣy+(1−ρ)2ytΣy (9)

Since the vector x and y are known, it turns out that our

measure of contrast is simply a quadratic equation in the mixing

coefficient ρ . Like all quadratic equations there will be a single

maximum or minimum stationary point. If it is a minimum then

the solution we seek must be at the end points of the line segment,

as it is at one of these points where (9) reaches a maximum

value. In fact it is easy to show for the problem at hand that the

coefficient vector does indeed lie at either end of the line segment,

A = xtΣx B = xtΣy C = ytΣy (10)

contrast = (A−2B+C)ρ2 +2(B−C)ρ +C (11)

because this is a second order polynomial, we know (save degen-

erate cases) there is a single maximum or minimum. From cal-

culus we know that if the 2nd derivative is larger than zero then

the corresponding function has a local minimum. We differentiate

(11) twice we find:

d2contrast
dρ2

= 2(A−2B+C) (12)

Because the covariance matrix is positive semi definite (and

α , β and γ are between 0 and 1) then A, B and C are all larger

than or equal to zero.

Let us suppose that the covariance matrix Σ is the identity

matrix. Then equation (12) is equal to,

2(|x|2 + |y|2 −2|x||y|) (13)

which is precisely the squared magnitude of the vector x−y. Vec-

tor magnitudes are always positive and so the second derivative

of our objective function is always positive and our polynomial

always has a minimum.

What about the case where Σ is not the identity matrix. Well

because Σ is positive semi definite we can write it as:

Σ =
√

Σ
√

Σ (14)

(see [6]) and so we can create the vectors:

x = [
√

Σ]−1x′ y = [
√

Σ]−1y′ (15)

It is straightforward to show that by substituting (15) into

(10) that with respect these new vectors, the endpoints of a new

line segment, effectively, has the identity matrix covariance. Yet,

the contrast optimisation is the same and we will find the same ρ
as before. But, of course, by construction, because the covariance

with respect to x and y is the identity the underlying polynomial
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has a unique minimum (we already demonstrated this). This argu-

ment suffices to show that (9) always has a unique minimum and

so the best maximum contrast, brightness preserving, greyscale

will lie on the endpoints of the line segment.

Thus we can dispense with QP. In our method we simply

intersect two planes and bound the resulting line to lie within the

unit cube. We check each endpoint in turn and choose the one

that has maximum variance. It is worth stating, though it is self

evident given the proof sketch above, that we get exactly the same

result as QP but at negligible cost (intersecting planes is a simple

non search algebraic operation).

As a final caveat we assume that there are two well defined

planes to intersect. But, there are degenerate boundary cases e.g.

if the mean in each of the R, G and B channels is the same. Then,

in this cases the two planes are the same and their intersection

is also a plane. So, in this case we would resort back to the QP

solution. But, for the 100’s of real images we possess, we have

not found a degenerate case yet. But, this is a real possibility the

reader should be aware of.

Experimental Results
We compared the maximum contrast outputs of our algo-

rithm to results published by Grundland and Dodgson [8] and Al-

sam and Kolås’s [1], see Figure 2. We implemented our own ver-

sion of Alsam and Kolås’s algorithm only so far as the greyscale

conversion.

We compared the run-times of our closed form solution

(implemented in MATLAB) and that of Qiu et al.’s QP method

[10] (using MATLAB’s own QP algorithm) to produce the

solution coefficients. We ran both methods 6 times and took the

mean time taken of the last 5 runs. Our closed form solution was

seen to process 35 times faster.

Conclusion and Future Work
This paper presents a closed form solution to converting

a colour image into a greyscale such that its contrast is max-

imised under brightness preserving constraints. To this end, we

present a method using only simple analytical calculations, prior

to which only a complex quadratic programming (QP) solution

existed [10].

Our approach exploits the weighted sum method of colour to

greyscale (Eq. (1)). The energy preserving (Eq. (3)) and bright-

ness preserving (Eq. (4)) constraints are visualised using planar

geometry whose intersection provides the line-segment solution

of channel weights. Due to the quadratic form of the variance

(Eq. (7)) and the posi semi definite nature of the covariance ma-

trix (Eq. (5)), the solution for maximum greyscale image contrast

will always exist at one of the end-points of the line segment.

Future work will consist of testing our reproduction for pref-

erence and also for ‘information content’. This will enable us to

provide statistical data on the effectiveness of our algorithm. Our

psychovisual experiments will be reported in the final paper.
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