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Abstract 
Reflectance functions can be represented by low-dimensional 

linear models with weighted sum of principal components (or, 

often, referred to as basis functions). Such method to obtain a low-

dimensional linear model is based on principal component 

analysis (PCA). The specific requirement for a low-dimensional 

model is to accumulate fraction of variance of the basis functions. 

The more basis functions included the more fraction of variance 

accumulates. The investigation of how many basis functions 

required so as to represent reflectance functions accurately has 

been extensively studied over the last two decades [1, 2] since 

Cohen fitted a linear model to spectral reflectance functions of 

Munsell color chips in 1964 [3]. In this paper, a comprehensive 

dataset of 97593 including six types of materials has been 

accumulated. These materials are paint, graphic, plastic, textile, 

skin and natural samples. Principal component analysis for each 

material has been studied. The effective dimension of reflectance 

functions representations for these materials has examined. It was 

found that a single set of basis functions can essentially be applied 

to represent all spectra in the world.  

Introduction 
The smoothness of spectral reflectance can be represented by 

a linear combination of few basis functions. These functions can 

represent the physical property of surface colours. The weighted 

sum of basis functions is able to approximate any reflectance curve 

to a specified degree of accuracy. The method called Principal 

Component Analysis (PCA) is often applied to derive the basis 

functions from a dataset. The basis functions are constrained to be 

orthogonal to each other and allow large datasets to be accurately 

represented by a small number of linear combinations of basis 

functions with a corresponding set of coefficients. Although 

spectral representation using basis functions have been extensively 

studied over the last 20 years, the results have been not conclusive 

regarding to the basis functions needed to represent the spectral 

reflectance and the dimension of spectral reflectances [3-7].  

The aim of this study is to derive a small number of basis 

functions from a set of spectra, representing the world of colours. 

A database, known as Leeds dataset, including 97593 spectral data 

items was accumulated. It comprises various materials such as 

paint, graphic, plastic, textile, skin and natural datasets. The 

similarities between the spectral characteristics of different 

materials were compared. The number of basis functions required 

to have accurately spectral reconstruction for each material was 

examined. A set of basis functions was derived to represent all 

spectral data with different materials. 

 

 

 

Spectral Datasets 
A comprehensive dataset having spectral reflectances of both 

artificial and natural materials was accumulated. It also included 

some spectra from the Standard Object Colour Spectra Database 

(SOCS) which is a collection of typical and difference sets of 

existing object colour reflectance spectra [8]. Table 1 tabulates all 

datasets and number of samples (NOS) in each dataset. According 

to their physical materials, they are divided into six groups: paint, 

graphic, plastic, textile, skin and natural. The spectra in different 

datasets originally had different wavelength ranges and sampling 

intervals. They are all interpolated into 10 nm intervals from 400 

to 700 nm. 

The paint group includes 672, 1562, 720, 1794, 981 and 505 

samples from Dupont SpectraMaster®, Munsell Book of Color – 

Glossy collection [9], Munsell Limit Color Cascade [10], NCS 

[11], DIN [12] and SOCS-Paint, respectively. The graphic group 

has the sample printed by inks, much finer pigment particle than 

paint ones, including 26782, 30624, 1152, 7856 samples from 

Packaging Printing Ink [13], SOCS-Graphic, SOCS-Photo, and 

SOCS-Printer, respectively. The plastic group has one dataset 

including 5337 samples provided by a plastic company via private 

communication. The textile group has colours on cotton, polyester, 

wool and silk including 4028, 1925, 1063 and 2832 samples from 

Industry Cotton set, Pantone® Cotton, PCC [14] and SOCS-

Textile, respectively. The skin group includes 357, 340, 8213 

samples from Oulu Skin [15], RIT Skin [16, 17] and SOCS-Skin 

respectively. The skin colours were collected from different 

positions on face and different continents. The natural database 

consists of 494 and 404 samples collected by Cheung’s [18] and 

Westland et al.’s [6] natural sets, respectively. The samples 

include leaves, petals, grass and barks. There are totally 97593 

spectra in the collection. 

Table 1: Description of each reflectance dataset 

Dataset NOS Dataset NOS 

Paint Group 6189 Textile Group 9848 

Dupont SpectraMaster® 672 Industry Cotton 4028 

Munsell I 1562 Pantone Cotton 1925 

Munsell II 720 PCC 1063 

NCS 1749 SOCS-Textile 2832 

DIN  981 Graphic Group 66414 

SOCS-Paint 505 Packaging Ink 26782 

Skin Group 8910 SOCS-Graphic 30624 

Oulu Skin 357 SOCS-Photo 1152 

RIT Skin 340 SOCS-Printer 7856 

SOCS-Face 8213 Natural Group 898 

Plastic Group 5337 Natural I 494 

Industry Plastic 5337 Natural II 404 
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Linear Models for Reflectance Representation 
For a given set of reflectance values with N sampling points 

for K samples, denoted by a N × K matrix P, the basis functions 
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component analysis (PCA). The representation of a spectral curve 

is weighted sum of a set of basis functions. For a reflectance vector 
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 associated to the kth sample can be reconstructed by the linear 

combination of the basis functions: 
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where nβ  is a weighted coefficient of the vector 

kp
v

corresponding to the basis function nu
v

; the kΓ
v

 is a N × 1 

column vector whose components are the weighted coefficients of 

the vector kp
v

 corresponding to the basis functions from the matrix 

U. Since vectors of U are orthonormal, the coefficient can be 

obtain by 
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In accordance with previous studies [19-21], there is a strong 

concentration of variance or energy in the first few singular values. 

The first basis function maximally represents the variance in the 

data, and subsequent basis functions maximally represent the 

remaining variance. This indicates that the reflectance functions 

can be represented using subspace with N
~

 < N components to 

reduce the dimension of the vector space. The number of the basis 

function N
~

 can be chosen with N
~

 less than N according to the 

eigenvalues. The first N
~

 basis functions are denoted by an N by 

N
~

 matrix )
~

(N
U . The basis functions related to small singular 

values can be removed and Eq. 1 becomes: 
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functions )
~
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U . This reduces the number of vector spaces to 

represent a reflectance functions. To determine an estimation of the 

effective dimension of the space, the accumulated fraction of 

variance denoted as )
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(NEa  is a useful notion: 
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Accumulated fraction of variance is defined as a ratio of the 

energy represented by the first N
~

 singular values to the total 

energy. The amount of required accumulated fraction of variance 

does not have a clear criterion. A typical value is 99% used by 

several researchers [2-4, 22]. In this study, the spectral 

representation quality was analysed with colour perception error 

and spectral reconstruction error. Two measures were used by the 

CIE DE2000 colour difference and Goodness-of-Fit Coefficient 

(GFC). A value of 1 ∆E00 unit was used as a criterion which is 

generally considered to be approximately one just noticeable 

difference (JND) in colour. The calculations were performed for 

CIE 1964 10 degree standard observer under a set of standard 

illuminants including D65, A and F11. The GFC [23, 24] is 

defined by: 

 

[ ] [ ]∑∑

∑

==

=
=

b

ai

ie

b

ai

im

b

ai

ieim

PP

PP

GFC

22
)()(

)()(

λλ

λλ

 (5) 

 

where )( imP λ  and )( ieP λ  are the measured and the estimated 

spectral data at wavelength λi; a and b are the upper and lower 

bounds of the wavelength range. 

Spectral Representation 
The PCA was applied to all the datasets described above to 

derive basis functions. Figure 1 shows a set of subplots. The 

subplots, from top to bottom, indicate the basis function derived 

from each material group in the sequence of paint, graphic, plastic, 

textile, skin and natural samples. Figure 1 shows, from left to right, 

the first four basis functions. 

In Figure 1, the first three basis functions from the subsets in 

the same group were closely overlapped to each other, especially 

for the paint group. All the paint subsets can be represented by 

basis functions with similar profile. The basis function 

representations of artificial material groups including the paint, 

graphic, plastic and textile are very similar. The two natural 

subsets had different characteristics and this can be explained by 

the differences in their colour gamuts. The fourth basis functions 

tend to oscillate more rapidly. The difference between subsets 

became clear. The present results showed that in each material 

group seven basis functions were sufficient to have spectral 

representation with average colorimetric accuracy less than 1.0 

∆E00 unit under illuminant D65, A and F11.Regardless of basis 

functions derived from which subset, they all gave good 

predictions to their material group. This inspired the idea to 

develop a universal set of basis functions for all world materials. 

According to the materials, six material groups are obtained 

and denoted as “PAINT”, “GRAPHIC”, “PLASTIC”, “TEXTILE”, 

“SKIN”, and “NATURAL”. Their basis functions are shown in 

Figure 1. Two more universal sets named “ARTIFICIAL” and 

“MIX” are also generated. The former set combined the four 

artificial groups to derive a set of basis function. The latter set 

consists of 400 spectra randomly chosen from each of the six 

generic sets, totally 2400 spectra. This set is designed to avoid the 

bias of basis function caused by different numbers of samples in 

different groups. A set of basis functions was also derived from all 

data of the 97593 reflectances denoted as “ALL”. Figure 2 shows 

the first six basis functions. It can be seen that the “ALL” set had 

the same curves of basis functions as the “ARTIFICIAL” set since 

the artificial samples was the majority of the full set. Thus, it is not 

necessary to use the basis functions of  “ALL” set. 
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Figure 1: The first four basis functions derived from each dataset 
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Figure 2: The six basis function derived from the universal sets 

A set of basis functions was derived from each material group 

and universal set. The reconstruction errors tested by the training 

group itself in average ∆E00 [25], average GFC [24] and 

accumulated fraction of variance [2] against number of basis 

functions are presented in Figure 3. For a perfect agreement, the 

former measure should be zero and the latter two measures should 

be one. The performance presented is expressed by the mean of the 

performance under D65, A and F11. In most cases, the errors were 

largely improved when the number of basis increased from three to 

four. The  “SKIN” group was an exception that only three basis 

functions were enough to reconstruct the spectra with the mean 

∆E00 less than one, average GFC higher than 0.999, and 

accumulated fraction of variance higher than 0.95. Generally, five 

basis functions were required to achieve mean ∆E00 less than one 

unit except the “TEXTILE” and “NATURAL” groups which 

needed 6 basis functions. The spectral errors needed seven basis 

functions to achieve average GFC of 0.999 except the two 

universal sets and the “GRAPHIC” group which needed eight basis 

functions. To have the accumulated fraction of variance higher 

than 0.95, seven to eight basis functions were required. 

Eight sets of basis functions were derived from each of the 

following group: PAINT, GRAPHIC, PLASTIC, TEXTILE, SKIN, 

NATURAL, ARTIFICIAL and MIX. These sets of basis functions 

were used to reconstruct each of the material group. With the 

criterion in mean ∆E00 of 1 unit for the average colorimetric errors 

under the three illuminants, the number of needed basis functions 

is shown in Table 2. 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 3: Reconstruction error in (a) average ∆E00 (b) average GFC (c) 

Accumulated Fraction of variance against number of basis functions 
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Table 2: Using different sets of basis functions to represent 

each material group required to achieve mean colour 

difference less than 1 ∆E00 unit 

       Testing 

Training 
PAINT GRAPHIC PLASTIC TEXTILE SKIN NATURAL 

PAINT 5 5 5 8 5 8 

GRAPHIC 5 5 5 7 4 9 

PLASTIC 5 5 5 8 4 9 

TEXTILE 6 6 6 6 5 8 

SKIN 7 8 7 9 3 >10 

NATURAL 7 7 7 8 7 6 

ARTIFICIAL 5 5 5 7 4 9 

MIX 5 6 6 7 4 7 

SUMMARY 5~7 5~8 5~7 6~9 3~7 6~10 

 

For the PAINT, GRAPHIC, and PLASTIC groups, they all 

required five basis functions for representing each other due to 

their high similarity in the spectral characteristics. The five to six 

basis functions of the TEXTILE group were sufficient to represent 

all of these groups except the NATURAL set. For reconstructing 

skin spectra, fewer basis functions were needed, but the basis 

functions derived from the SKIN group were not suitable to 

represent the other sets. The NATURAL generally needed more 

basis functions to reconstruct because the spectral characteristics 

were different from the others.  

 

 

 
Figure 4: The colorimetric errors in terms of mean ∆E00 with eight basis 

functions of each set tested by the six material groups. 

Figure 4 show the colorimetric errors in terms of mean ∆E00 

with eight basis functions of each set by testing the six material 

groups. The spectral reconstructions of the TEXTILE and 

NATURAL were worse than other groups with exception of using 

basis functions of themselves. Even the ARTIFICIAL set did not 

give better reconstruction for the TEXTILE group than using the 

material itself. By using the eight basis functions of the MIX group, 

the errors in the TEXTILE and NATURAL groups were reduced. 

The basis functions derived from the TEXTILE and MIX groups 

gave 0.37 and 0.36 mean ∆E00 for all groups, respectively. This 

was better than using the other sets to derive basis functions. 

Both of the GFC and ∆E00 were used in this study, and they 

gave the similar results so that only ∆E00 results are given above. 

In terms of spectral errors, the basis functions derived from the 

MIX group gave 26.66% reconstructed spectra with the GFC 

values higher than 0.9999 where the TEXTILE set gave 14.50%. 

Both two sets only had less than 1% reconstructed spectra with the 

GFC values less than 0.99.  

Conclusions 
A comprehensive dataset of 97593 spectra was accumulated 

in this study. They included six materials: paint, graphic, plastic, 

textile, skin and natural objects. Each of them had several subsets. 

The number of basis functions required for representing each set 

has been investigated. The results concerning the needed basis 

functions are based on our calculations with 10 degree standard 

observer under illuminant D65, A and F11. The curves of basis 

functions for the paint, graphic and plastic were very similar. They 

gave a good reconstruction to each other. In the natural or skin 

database, the spectra can be reconstructed well by using their own 

basis functions. However, even though the basis functions derived 

from different kind of subsets had different spectra characteristics, 

they still reconstructed the spectra well but more basis functions 

were needed to get equivalent accuracy.  Generally, the first basis 

function was the smoothest and the higher order principal 

components tend to oscillate more rapidly. This is consistent with 

many previous researches [5, 26]. 

A set of basis functions was also developed from a mixture set. 

The mixture set consisted of 400 spectra randomly selected from 

each of the six materials, and 2400 spectra in total. The result 

shows the eight basis functions derived from this MIX set provide 

good spectral reconstruction. The mean colorimetric error was 0.36 

∆E00, and more than 99% reconstructed spectra had GFC value 

higher than 0.999. 
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