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Abstract 
This paper proposes a method for estimating the illuminant 

spectral power distributions and their relative positional 

relationship of multiple light sources under a complex illumination 

environment. A multiband camera system is used for capturing 

spectral images of dielectric objects in a scene. First, dielectric 

object surfaces are segmented into regions with different object 

colors, by using the hue angle of the diffuse reflection component.  

Specular highlights are used as a clue for estimating the light 

source information, which are detected on curved object surfaces 

with the different object colors. The illuminant spectra of light 

sources are estimated from the camera data for highlight areas 

detected on each surface region. Then, the illuminant spectral 

estimates are obtained for a different set of light sources. Next, the 

geometric information, such as the number of light sources and 

their relative positional relationship is predicted based on the set 

of estimated illuminant spectra on the segmented surface regions.   

The algorithm of probabilistic relaxation labeling is used for 

classification of the detected highlights and the estimated spectra.  

The feasibility of the proposed method is examined in experiments 

on real scenes. 

Introduction  
Estimation of scene illumination from image data has 

important imaging applications, including image science and 

technology, computer vision, and computer graphics.  The scene 

illuminant estimation problem has a long history.  Although, so 

far, many methods were proposed for scene illuminant estimation, 

most methods assumed uniform illumination from a single light 

source [1]-[3].  We note that many illumination sources are present 

in natural scenes.  The case of one source seldom happens.  For 

example, Figure 1 illustrates an indoor scene having electric light 

sources of ceiling lamps, table lamps, and natural light source 

through windows.  An outdoor scene may have the direct 

illumination source of sunlight and the second source of blue sky. 

The problem of estimating multiple light sources has been 

discussed in the field of computer vision and computer graphics 

[4]-[6].  However, the purpose is not to estimate the illuminant 

spectral information, but to estimate the geometric information, 

such as the number, direction, and intensity of light sources.  

Moreover, most previous methods required images of a calibration 

object given shape (typically sphere), which needs to be removed 

from the scene and might cause artifacts.  Recently, a methodology 

was presented for color constancy under multiple light sources, 

where a scene image was assumed to be captured under only one 

or two distinct light sources [7]. 

The present paper proposes a method for the detection and 

estimation of multiple illuminants, using only one multiband image 

of a scene under a complex illumination environment.  Our method 

does not rely on object of fixed shape, but can be used on 

inhomogeneous dielectric objects of arbitrary convex shape.  The 

most common light sources are point light sources, directional 

light sources, and area light sources.  Specular highlights 

appearing on the object surfaces are used as a clue for estimating 

the light source information.  We will estimate not only the 

illuminant spectral-power distributions of the light sources, but 

also predict the geometric information, such as the number of light 

sources and their relative positional relationship.  

 

 
Figure 1. Example of indoor natural scene. 

A multiband camera system is constructed for capturing 

spectral images.  First, the image of object surfaces is segmented 

into uniform object color regions, by the diffuse reflection 

component of the dichromatic reflection model.  Specular 

highlights are detected on the curved object surfaces with the 

different object colors.  Then, the illuminant spectra of light 

sources are estimated from the multiband camera data for highlight 

areas detected on each surface region.  Next, the geometric 

information of the number of light sources and their relative 

positional relationship is predicted based on the set of estimated 

illuminant spectra on the segmented surface regions, by using the 

algorithm of probabilistic relaxation labeling.  Finally, we examine 

the feasibility of the proposed method in experiments on real 

scenes. 

Imaging System 
Figure 2 shows our multiband imaging system for capturing 

the high-dimensional spectral images.  This system is realized 

using a liquid-crystal tunable (LCT) filter, a monochrome CCD 

camera with Peltier cooling system, and a personal computer.  We 

represent illuminant spectra with 61-dimensional (61-D) vectors, 

where the visible wavelength range [400-700nm] is sampled at 

equal intervals of 5nm.  The total spectral sensitivity functions of 

the imaging system are computed by using transmittance and the 

camera sensitivity the filter function, and the exposure time. 
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(a) System overview 

 
(b) Total spectral-sensitivity functions. 

Figure 2. Multi-band imaging system. 

Highlight Detection and Illuminant Spectral 
Estimation 

Dichromatic Reflection Model 
We assume that an object surface is composed of 

inhomogeneous dielectric material such as plastic or paint.  The 

dichromatic reflection model suggests that light reflected from the 

object is decomposed into two additive components: specular and 

diffuse reflection components.  Therefore, the radiance of the 

reflected light Y(θ, λ) is a function of the wavelength λ , ranging 
over the visible wavelengths, and the geometric parameter θ, 
which includes the all angles of incidence, phase, and viewing.  

This model describes the reflected light in the form  

( ) ( ) ( ) ( ) ( ) ( ), S DY c E c S Eθ λ θ λ θ λ λ= + , (1) 

where E(λ) and S(λ) denote the spectral-power distribution of the 
incident light and the surface spectral reflectance of the object, 

respectively.  The weights cS and cD are the geometrical scale 

factors.  The specular reflection component indicated by the first 

term in Eq.(1) corresponds to the light-source color, and the 

diffuse reflection component indicated by the second term 

corresponds to the object color. 

Detection of    Object Color Regions and Highlight 
Areas 

When a convex object surface is illuminated by several light 

sources from different directions, each of highlight areas is used as 

a clue for estimating the light sources because of the dichromatic 

reflection property. 

Let ( )I λ  be the observed color signal (radiance of the 

reflected light) from an object surface at each pixel point.  The 

color signals can be recovered from the outputs of the multiband 

imaging system by knowing the spectral sensitivity functions 

( ){ }kR λ .  First we compute the luminance value Y of the color 

signals as 

700

400
( ) ( )Y I y dλ λ λ= ∫ , (2) 

where ( )y λ  is the CIE luminosity function.  A simple way for 

detecting highlight areas is to use a luminance threshold 0Y Y≥  for 

the whole image area.  However, highlight areas on different color 

objects cannot be detected appropriately by such a simple 

thresholding.  

Therefore, in this paper, dielectric object surfaces are first 

segmented into regions with different object colors, by using the 

hue angle of the diffuse reflection component.  The (x, y) 

chromaticity coordinates at each pixel are computed from the 

tristimulus values.  Then we define the hue angle H as 

0 0arctan( , )H y y x x= − − , (3) 

where 0 0( , )x y  is a standard white coordinates.  Because most 

illuminants in a natural scene are approximated by the black-body 

radiator, the chromaticity coordinates are placed on the black-body 

locus on the xy diagram.  We have found that the center 

coordinates of daylight black-body radiators are located closely to 

(1/3, 1/3). So we use normally 0 0( , ) (1 3,1 3)x y = . 

We note that precise object segmentation is not necessary for 

the present illuminant estimation, but prominent highlights are 

necessary to be detected and classified into each object surface.    

In this paper, highlight areas are detected in two steps.  First, 

different object color areas are segmented simply by the hue 

component.  Although precise region segmentation may not be 

performed by the hue component, several regions with uniform 

colors are roughly extracted.    Second, highlight areas are detected 

from the respective color area by using the luminance thresholding.  

Here, the luminance threshold is adaptively determined as 
( )

0

color areaY Y≥ .  Thus, object color regions are detected from the 

image data and specular highlights are extracted on the curved 

object surfaces with the different object colors. 

Estimation of Spectral-Power Distributions 
Considering the dichromatic reflection property, the image 

data belonging to each detected highlight area are projected onto a 

2-D space using two principal components as 

1 1

2 2

t

t

C

C

  
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   

p
I

p
, (4) 

where I denotes the 61-D column vector representing the color 

signal, and p1 and p2 denote the first and second principal 

component vectors, which are computed from the image data set  

{I} belonging to the highlight area.  A histogram of the projected 

2-D image data (C1, C2) consists of two clusters for the specular 

reflection component and the diffuse reflection component 

according to the dichromatic reflection model.  Figure 3 shows an 

example of the pixel distribution at a highlight area projected on 

(C1, C2) plane.  Note that the histogram is divided into two linear 

clusters. Then, the cluster of specular reflection component 

indicating the light-source color is extracted to estimate illuminant. 
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(a) An example of highlight area 

 
(b) 2-D pixel distribution 

Figure 3. 2-D pixel distribution at a highlight area projected on (C1, C2) plane. 

It should be noted that the linear highlight cluster is much 

longer than the linear cluster of the diffuse reflection component.  

In this case, the principal component vector of the highlight cluster 

corresponds to the directional vector representing the illuminant.  

Therefore, both clusters are separated by an iterative optimization 

method, and the illuminant spectral-power distribution can be 

estimated by extracting the principal component vector of the 

highlight cluster and transforming it inversely into the original 61-

D spectral space.   

The estimated illuminant ê  is calculated with the first 

principal component vector 
1 2
ˆ ˆ( , )C C  extracted from the highlight 

cluster as follows:  

1 1 2 2
ˆ ˆˆ C C= +e p p , (5) 

Applying the above algorithm to the data for each highlight area 

provides a set of the estimated illuminant spectra for different light 

sources on each segmented object surface. 

Estimation of Geometric Information of Light 
Sources 

After the illuminant spectral estimation, the geometric 

information of the number of light sources and their relative 

positional relationship is predicted based on the set of estimated 

illuminant spectra and the detected highlight locations.  The 

algorithm of probabilistic relaxation labeling [8] is used for 

classification of the candidate light sources.   

Let label Lk be the k-th highlight on a reference object that has 

the most highlights among all the objects.  All highlights on other 

objects are matched to the highlights on the reference object.  Let 

Oi be the i-th highlight on another object.  The detection of the 

relative positional relationship involves finding the most matched 

highlight label *kL  on the reference object for all highlights {Oi} 

on the other object.  The probabilistic relaxation gives highlight Oi 

a probability ( ), ,, 1i k i kk
P P =∑  for each label Lk on the reference 

object.  Figure 4 shows an example of the notation for estimating 

the positional relationship among the light sources.  In the figure, 

P1,3 shows the probability which the highlight O1 matches with the 

highlight L3. 

 

 
Figure 4. Notation for estimating the positional relationship among the light 

sources. 

A candidate label, *kL , with the maximum probability is 

assigned as the final corresponding highlight for highlight Oi.  The 

initial probabilities (0)

,i kP  are derived from the root mean squared 

error, 
1 2

ˆ ˆ
i k−e e  , of the estimated spectral-power distributions 

between Lk and Oi .  Then, the iterative processing is started and 

the probabilities are updated by the following iterative equation:  

( )
( ) ( )

, ,( 1)

, ( ) ( )

, ' , '

'

t t

i k i kt

i k t t

i k i k

k

P q
P

P q

+ ×
=

×∑
　 . (6) 

The compatibility function (CF) denotes the contribution from the 

other highlights, which are defined as follows:  

( ){ }( ) ( )

, , , , ,maxt t

i k i j k l j l
l

j

q r P= ×∑ 　 , (7) 

where Ll and Oj are the labels for highlight l on the reference 

object and highlight j on another object, respectively.  The CF 

evaluates only the candidate label with the maximum probability.  

Compatibility coefficients, r, are formulated as follows:  

( ), , , , , ,max 0, , ( 0)i j k l i j k lr degα α= −∆ > , (8) 

where deg∆  indicates the spatial relationship between a pair of 

target highlights {Lk, Oi} and another pair of highlights {Ll, Oj} as 

shown in Fig. 5.   

The iterative process is converged if the following condition 

is satisfied,  

( 1) ( )

, ,max max ,t t

i k i k i
k k

P P Th O+ − < ∀ , (9) 

where Th means a threshold of the convergence condition.  Then, 

the label *kL  with the maximum probability ( )

, *

t

i kP  is assigned as the 

final corresponding highlight for highlight Oi.  
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Figure 5. Notation of the spatial relationship ∆deg between a pair of target 
highlights. 

After performing the above computational process for all 

objects, a set of corresponding highlights on all objects is 

determined for each label highlight Lk on the reference object.  

Finally, the number of the label highlight on the reference object 

becomes the number of light sources.  The relative positional 

relationship can be derived from the geometric relations of label 

highlights on the reference object. 

Experimental Results 
Figure 6 shows an experimental scene.  Plastic and ceramic 

objects placed on a table are illuminated using four different light 

sources: (1) daylight through the window, (2) a three-band 

fluorescent lamp, (3) an LED source, and (4) a three-band 

fluorescent lamp.  The fluorescent lamps, (2) and (4), have the 

same spectral-power distribution.  

Figure 7 shows the captured image of the four objects under 

the different illuminations.  Figure 8 shows the highlight areas 

detected by the algorithm proposed in Sec. 3.2.  Now let us check 

the details of the estimation results on the blue ceramic cup and the 

green object.  Figures 9 and 10 show the spectral-power 

distributions estimated by the algorithm proposed in Sec. 3.3.  The 

blue dotted curves show the estimated illuminant spectra, and the 

red curves show the direct measurements by using a spectro-

radiometer.  These results suggest a very high estimation accuracy 

of illuminant spectral-power distributions, including the spike 

peaks of the artificial illuminants of LED and fluorescence.  As the 

result, we know that there are maximum four light sources with 

different three spectral distributions in the scene.   

The proposed estimation of the spectral-power distribution is 

robust for even if the highlights fall near the border of a segmented 

area.  However, the proposed algorithm does not work if almost 

superimposed plural lights exist in a detected highlight area.   

Figure 11 shows the classification results for the light sources 

labeled by the probabilistic relaxation algorithm proposed in Sec. 

3.4.   The colored squares indicate the relative positions of light 

sources on the object surfaces.  In the figure, the same colored 

squares across different objects are judged as having the same light 

sources.   In this scene, the green object is selected as the reference 

object, and the relative positional relationship is determined on this 

object.   Each light source could be classified as one of the four 

light sources, even though the fluorescent lamps, (2) and (4) had 

the same spectral power distributions.  The classification results 

are correct for all the candidate light sources.  From the detected 

positional relationship among the multiple light sources, we can 

predict the relative directions and positions of those light sources 

on the target objects as follows: Outdoor daylight comes from the 

left.  Two fluorescent lights are at the top front and the top back.  

LED source exists at the right. 

 

 
Figure 6. Experimental scene. 

 
Figure 7. Captured image of different objects. 

 
Figure 8. Detected highlight areas. 
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Figure 9. Close-up of highlights on blue cup and the estimated illuminant 

spectra. 

 

  

  
Figure 10. Close-up of highlights on green object and the estimated illuminant 

spectra. 

Conclusion 
We have proposed a method for estimating the illuminant 

spectral power distributions and their relative positional 

relationship of multiple light sources by using only one image of a 

scene.  A multiband camera system was used for capturing spectral 

images of dielectric objects.  First, dielectric object surfaces were 

segmented into regions with different object colors.  The 

illuminant spectra were estimated from the camera data for 

highlight areas detected on each surface region.  Next, the relative 

positional relationship of the light sources was predicted based on 

the set of estimated illuminant spectra on the segmented surface 

regions.   The probabilistic relaxation labeling algorithm was used 

for this purpose.  We have demonstrated experimentally the 

accuracy of our method, both in detecting the number of light 

sources and their positional relationship and in estimating their 

illuminant spectral-power distributions, by examinations on real 

scenes.  The proposed method is applicable even when non-

directional ambient light exists in the scene. 

 

  

  

Figure 11. Classification results on all objects. 
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