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Abstract
The White-Patch method, one of the very first colour con-

stancy methods, estimates the illuminant colour from the max-

imum response of three colour channels. However, this simple

method has been superseded by advanced physical, statistical and

learning based colour constancy methods. Recently, a few re-

search works have suggested that the simple idea of using max-

imum pixel values is not as limited an idea as it seems on first

glance. These works show that in several situations some manip-

ulations can indeed made it perform very well. Here, we extend

the White-Patch assumption to include any of: white patch, high-

lights or light source; let us refer to these pixels in an image as

the “bright” pixels areas. We propose that bright pixels are sur-

prisingly helpful in the illumination estimation process.

In this paper, we investigate the effects of bright pixels on

several current colour constancy algorithms. Moreover, we de-

scribe a simple framework for an illumination estimation method

based on bright pixels and compare its accuracy to well-known

colour constancy algorithms applied to four standard datasets.

We also investigate failure and success cases, using bright pix-

els, and propose desiderata on input images with regard to the

proposed method.

Introduction
Illumination estimation, which is the main step in colour

constancy processing, is an important prerequisite for many com-

puter vision applications. One of the first colour constancy meth-

ods, the so-called White-Patch or Max-RGB method estimates

the illuminant colour from the maximum response of three colour

channels [24]. With the advent of newer and more precise colour

constancy methods such as Grey-World [3], Gamut Mapping [12],

Grey-Edge [31] and many other complex methods (refer to [21]

for an overview), few researchers or commercial cameras use the

White-Patch method. On the other hand, recent research such

as that on perceptual color contrast enhancement by Choudhury

and Medioni [4] or on the “rehabilitation” of MaxRGB by Funt

and Shi [15] propose that a local mean calculation such as lo-

cal blurring as a preprocessing step can significantly improve the

performance of this simple method, consisting of simply finding

the maximum in each colour channel. Simply put, these works

propose it is advantageous to calculate the max of a local mean

image.

Recently, Drew et al. [6] found analytically that the geomet-

ric mean of bright (generally, specular) pixels is the optimal es-

timate for the illuminant, based on a standard dichromatic model

for image formation (which accounts for the matte and highlight

appearance of objects). This work proposes that in the presence

of specular highlights the “mean of the max” is the best illu-

minant estimate, in contradistinction to previous works [15, 4]

which say it is the “max of the mean.” The analytical approach [6]

claims performance comparable with very complex colour con-

stancy methods despite its simplicity.

The bright areas of images can be white surfaces or light

sources as well as highlights and specularity, and all are helpful

in the illumination estimation process. Highlights and white sur-

faces both tend to have the colour of light in ideal conditions for

dielectric materials such as plastic.

In this paper, we investigate the effects of bright pixels on

different colour constancy algorithms. We describe a simple

framework for an illumination estimation method based on bright

pixels and compare its accuracy to well-known colour constancy

algorithms applied to four standard datasets. We also investigate

failure and success cases, using bright pixels, and draw conclu-

sions on input images with regard to the proposed method.

Illumination Estimation by Specular reflec-
tion

In specular reflection, light from a single incoming direction

is reflected into a small cone of outgoing directions. This contrasts

with diffuse reflection, where light is partially absorbed and par-

tially scattered within the surface material. Areas of images that

are specular tend to be bright. Moreover, the spectral power dis-

tribution (SPD) of specular reflections is the same as the illumina-

tion’s SPD, within a Neutral Interface Reflection (NIR) [25] con-

dition, which mostly obtains for the surfaces of optically inhomo-

geneous objects (such as ceramics, plastics, paints, etc.); however

it does not always hold for the surfaces of optically homogeneous

objects (such as gold, bronze, copper, etc.) [20]. These proper-

ties make specular reflection, which is usually in bright areas of

image, an appropriate tool for estimating illumination. Many illu-

mination estimation methods derive from the dichromatic model

for specular reflection proposed by Shafer [28].

Klinker et al. [23] showed that when the diffuse colour is

constant over a surface, the colour histogram of its image forms a

skewed-T shaped distribution, with the diffuse and specular pixels

forming linear clusters. They used this information to estimate

a single diffuse colour. Therefore in order to use this principle,

their approach needed to segment an image into several regions

of homogeneous diffuse colour.

Lee [26] proposed a method which uses specularity to com-

pute illumination by using the fact that in the CIE chromaticity

diagram [33] the coordinates of the colours from different points

from the same surface will fall on a straight line connected to the

specular point. This is the case when the light reflected from a

uniform surface is an additive mixture of the specular component

and the diffuse component. This seminal work initiated a substan-
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tial body of work on identifying specular pixels and using these

to attempt to discover the illuminant [27, 30]. Another approach

extending these algorithms is to define a constraint on the possible

colours of illumination, making estimation more robust [8, 9].

Extending the White Patch Hypothesis
The White-Patch hypothesis is essentially that there is al-

ways a white surface in the image. Let us extend this assumption

to include any of: white patch, specularities, or light source (or

an effective white, e.g. a bright yellow and red pixel which com-

bined have the same max R, G and B as a white patch). We also

use the term gamut of bright pixels, in contradistinction to max-

imum channel response of the White-Patch method, which typi-

cally deals only with the brightest pixel in the image. Obviously,

using a single pixel or very small area is noisy and not robust.

Since are we dealing with bright pixels we need to be very

careful about clipped pixels, i.e. pixels where the light reflec-

tion exceeds the dynamic range of the camera. Here for each

colour channel we remove pixels which exceed 90% of the dy-

namic range. Then we simply define bright pixels as the top T %

of luminance given by R+G+B.

To investigate the utility of this assumption, we carry out

a simple experiment. We check whether or not the actual illu-

minant colour falls inside the 2D gamut of bright pixels. We

find that the actual illuminant colour falls in the 2D gamut of

the top 5% brightness pixels of each image for the SFU Labo-

ratory Dataset [2] for 88.16% of images, in 74.47% of images for

the ColorChecker dataset [29], and in 66.02% of images for the

GreyBall Dataset [5]. Fig. 1 shows the 2D gamut in chromaticity

space {r,g} = {R,G}/(R +G+ B), with the top-5% brightness

pixels in green. The actual measured illuminant is shown as a

red star. Clearly, as Fig. 1(c) shows, with no supporting evidence

it may happen that the illuminant does not fall within the bright

region.
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Figure 1. Examples of image evidence: top-5% brightness pixels in green,

other pixels in blue, and red star showing the correct illuminant point in r,g

chromaticity space. (a) Image with white patch; (b) Image with specularity;

(c) Image without white patch or specularity.

When there are no strong highlights, source of light, or white

surfaces in the image, the bright pixels are not helpful; in that case

there can be areas of an image belonging to the brightest surface

which tend towards that surface’s surface colour. Alternatively

this situation may simply arise from a set of single pixels from all

over the image.

The fundamental question here is what is the probability of

having an image without strong highlights, source of light, or

white surface, in the real world? Knowing the answer to this

question is vital when we investigate the effect of bright pixels

in colour constancy.

The Effect of Bright Pixels in Well-known
Colour Constancy Algorithms

The foundational colour constancy method, the White-Patch

or Max-RGB method, estimates the illuminant colour from the

maximum response of the three colour channels [24]. It is based

on the assumption that the maximum response in the channels is

caused by a white patch. The White-Patch method usually deals

with the brightest pixel in the image, so it is noisy and non-robust.

Funt and Shi [15, 14] suggested that carrying out a local mean

calculation preprocessing step can significantly improve its per-

formance.

Another well-known colour constancy method is based on

the Grey-World hypothesis [3], which assumes that the average

reflectance in the scene is achromatic. Finlayson and Trezzi [11]

formalize grey-based methods by subsuming them into a single

formula using the Minkowski p-norm.

(

∫

I
p
k
(x)dx
∫

dx

)
1
p

= ek (1)

where e is estimated illuminant color and k denotes R, G or B.

For p = 1 the equation is equal to the grey-world assumption and

for p → ∞ it is equal to color constancy by White-Patch; and it is

Shades of Grey for p more than 1 and less than infinity. At first

glance we see no distinction for bright pixels in the Grey-World

assumption; however since it is an averaging, the higher values,

which are brighter pixels, contribute a good deal more compared

to dark pixels, especially for higher p.

Grey-Edge is a recent version of the Grey-World hypothesis

that states: the average of the reflectance differences in a scene

is achromatic [31]. Using the same formulation as for grey-based

methods, Grey World, Shades of Grey, and Grey Edge can be

combined in a single framework for illuminant estimation meth-

ods:

(

∫

∥

∥

∥

∥

∂ nIk(x)

∂xn

∥

∥

∥

∥

p

dx

)
1
p

= ek (2)

Where n is grey-edge the “order”.

The Gamut Mapping algorithm, a more complex and more

accurate algorithm, was introduced by Forsyth [12]. It is based on

the assumption that in real-world images, for a given illuminant

one observes only a limited number of colours. Several extensions

to gamut mapping algorithms have been proposed [1, 7, 10, 19].

The bright pixels are the upper boundaries the of colour gamut

for a single image. Vaezi Joze and Drew [22] introduce a White-

Patch Gamut algorithm, which includes the top-brightness pixels

in a 3D gamut; they show that adding new constraints based on

the white patch gamut to standard Gamut Mapping constraints

outperforms the Gamut Mapping method and its extensions.

As a simple experiment in order to investigate the effect of

bright pixels, we run White-Patch, Grey-World, Grey-Edge and

Shades of Grey methods for the top 20% brightness pixels in each

image, and compare to using all image pixels.
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Table 1: Angular errors for several colour constancy algo-

rithms for linear ColorChecker dataset [29] using all pixels and

and using the top 20% brightness pixels.

Dataset All Pixels 20% brightness

Methods Median Mean Median Mean

White Patch 6.31◦ 7.82◦ 6.31◦ 7.81◦

Grey World 6.33◦ 6.40◦ 3.46◦ 4.23◦

Grey Edge (p = 1,σ = 6) 4.73◦ 5.56◦ 4.65◦ 5.46◦

Shades of Grey (p = 4) 3.51◦ 4.45◦ 3.08◦ 4.17◦

We use the standard well-known colour constancy methods:

White-Patch, Grey-World, Grey-Edge, and Shades-of-Grey im-

plemented by [31], testing on the re-processed version of the

ColorChecker dataset [29], using the dataset’s suggested clipping

threshold. For those methods which need tunable parameters, we

utilize optimal parameters for this dataset.

Table 1 shows the accuracy of using top 20% brightness pix-

els for reprocessed version of the ColorChecker dataset [29], in

terms of the mean and median of angular errors, for several colour

constancy algorithms applied to this dataset. The results indicate

that although we only use one fifth of the pixels, performance is

better than or equal to using all pixels. This is especially true for

Grey-World and Shades-of-Grey (both follow eq. (2)), where us-

ing top-brightness pixels significantly outperforms using all pix-

els.

The Bright-Pixels Framework
Here we propose a simple framework in order to investigate

the effect of bright pixels for illumination estimation. First of all,

since we dealing with bright pixels we need to be careful about

clipped pixels. Therefore we remove pixels exceeding 90% of the

dynamic range of the camera for each colour channel. We simply

define bright pixels as T percentile of the luminance, taken to be

the sum of channels, R+G+B.

If these bright pixels represent highlights, a white surface, or

a light source, they approximate the colour of the illuminant. Any

statistical estimator can be brought to bear for estimating the illu-

minant, e.g. the median, mean, geometric-mean or the Minkowski

p-norm.

Figure 2 plots angular errors in terms of mean and median for

recovering the illuminant, using T percentile (from 1% to 10%)

of brightness pixels, using different statistical estimators: median,

geometric-mean, mean and the Minkowski p-norm for p = 2 and

p = 4, for the linear-image ColorChecker dataset [29]. Consider-

ing that the best median and mean angular errors in this dataset

have been reported as respectively 2.5◦ using Gamut Mapping in

[18] and 3.5◦ by the complex High Level Visual Information algo-

rithm [32], the achievement is surprisingly good whilst being very

simple (refer to Table 3 for results for other color constancy meth-

ods). We see that optimal performance in terms of the median is

for the p-norm estimator, with p = 2 for the top-3% brightness

pixels; in terms of using the mean, is for the Mean algorithm for

top-5% brightness pixels.

Figure 3 shows examples of images from the ColorChecker

Dataset having angular error more than 13◦, using the top-3%

brightness pixels and p-norm estimator with p = 2. Figure 3 indi-
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Figure 2. The plots of angular errors in terms of (a) median error and (b)

mean error for recovering the illuminant, using T percentile of brightness pix-

els using different 3-vector statistical estimators: median, geometric-mean,

mean and the Minkowski p-norm for p = 2 and p = 4, for the linear-image

ColorChecker dataset [29].

cates that a common failure for a bright pixel framework is when

there are multiple illuminants in the scene (we can see the same

failures in the GreyBall dataset). Examples are skylight from

windows plus indoor light, in-shadow plus non-shadow lights, or

two different light sources in an indoor room. Although most

color constancy methods assume a single light source, neverthe-

less in these datasets there are some images with more than one

illuminant. Obviously, in the case of more than one illuminant

the bright-pixel method finds the brightest illuminant while other

methods such as Gamut Mapping find the dominant illuminant or

combination of illuminants.

Another failure case happens if bright pixels are not good

estimators of the illuminant; or equally there are no highlights,

white surfaces, or light sources in the image. Although at first

glance this seems to be a common situation, our experiments on

current standard color constancy datasets have shown that this

happens even less than the multiple-illuminants situation (Fig-

ure 3 shows a few examples). In this case bright pixels either

capture the colour of the brightest surface in the image or a distri-

bution of bright pixels from all over the image. In the former case

we can simply check if these pixels are in the possible chromatic-

ity gamut of illuminants; and the latter case can be distinguished

based on the distribution of these pixels in chromaticity space.

As we mentioned, a local mean calculation such as local
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Figure 3. Examples of images from ColorChecker Dataset with maximum

angular error, using top 3% brightness pixels and p-norm estimator with p = 2

Table 2: The median angular errors for the linear-image Col-

orChecker dataset [29] using top brightness pixels for three

variations of eq. 2 when different local mean operations are

applied as preprocessing. The first value in parentheses for

each element is the optimum value of T and the second is the

value of p in the p-norm for that experiment.

Shades of Grey n=1 grey-edge n=2 grey-edge

no local mean 2.61◦ (2%,2) 4.61◦ (5%,2) 4.46◦ (5%,2)

64×64 bicubic 2.88◦ (3%,1) 4.86◦ (5%,1) 4.76◦ (5%,2)

Median filter 2.69◦ (3%,2) 4.32◦ (5%,1) 4.29◦ (5%,1)

Gaussian filter 2.72◦ (3%,2) 4.37◦ (5%,1) 4.13◦ (5%,1)

blurring has been shown to improve the performance of simple

methods such as White-Patch [15]. Therefore, here we examined

applying three different local mean calculations as preprocessing,

as follows: (1) resizing to 64×64 pixels by bicubic interpolation;

(2) median filtering (inspired by [15]); and (3) a Gaussian blurring

filter.

Figure 3 shows that the p-norm (and we can consider the

mean as p-norm with p = 1) is a better estimator than median

or geomean. Table 2 gives median angular error, with optimal

parameters (T and p), for the reprocessed ColorChecker dataset

using our three local mean preprocessing, for shades of gray and

the 1st-order and 2nd-order grey-edge method for top-brightness

pixels. For the meaning of “n” the reader is referred to eq. (2).

Further Experiments
We applied the proposed framework to four standard color

constancy datasets. The first is Barnard’s dataset [2], denoted the

SFU Laboratory dataset; this contains 321 measured images un-

der 11 different measured illuminants. The second dataset, which

contains out-of-laboratory images, is the re-processed version of

the Gehler colour constancy dataset [16], denoted as the Col-

orChecker dataset, which was provided by Shi and Funt [29]. This

dataset consists of 568 images, both indoor and outdoor. The il-

luminant ground truth for these images is known because each

image has a Macbeth ColorChecker placed in the scene (which

must masked off in tests). The third dataset, which contains low

quality real-world video frames, is the GreyBall dataset of Ciurea

and Funt [5]; this contains 11346 images extracted from video

recorded under a wide variety of imaging conditions. The ground

truth was acquired by attaching a grey sphere to the camera, dis-

played in the bottom-right corner of the image – and this must be

masked off during experiments. The last color constancy dataset

is the HDR dataset [13] provided by Funt, which contain 105 im-

ages constructed in the standard way from multiple exposures of

the same scene. The colour of the scene illumination was deter-

mined by photographing an extra HDR image of the scene with

4 Gretag Macbeth. Although HDR is a small dataset, it has two

advantages compare to other datasets: it has high quality images

and no clipped pixels that might have arisen from exceeding the

dynamic range.

We search using brute force for optimal parameters: i.e., the

value of p in the p-norm, the gradient order n in edge-based p-

norm, which local mean method to apply, and finally the top-

brightness threshold. Table 3 shows the overall optimal perfor-

mance of a bright-pixels framework for our four standard datasets,

compared to the standard methods. The Bright Pixels row rep-

resents the optimal value reachable by a bright-pixel framework

over all methods White-Patch, Grey-World, and Grey-Edge. For

the bright-pixels framework, if the estimated illuminant is not in

the possible illuminant gamut for that dataset, meaning that there

is no white surface, specularity, or light source in the image, we

fall back on the Grey-Edge method instead – this is the row la-

belled Bright Pixels + grey-edge in Table 3. This situation

occurs relatively seldom: for 178 out of 11136 images for the

GreyBall set, 3 out of 568 for the ColorChecker set, 89 out of 321

for the SFU Laboratory dataset, and 9 out of 105 for the HDR

dataset.

Using eq. (2) to test the bright-pixels hypothesis, the opti-

mal parameters for the SFU laboratory dataset are: Gaussian fil-

ter as preprocessing plus using the Shades of Grey method with

p = 2 for the top .5% brightness pixels. Here we test order n in

{0,1,2}, p-norm parameter p in {1,2,4,8,16}, brightness thresh-

old T in {.5%,1%,2%,3%,5%}. The optimal parameters for the

ColorChecker dataset are: no preprocessing, and using the Shades

of Grey method with p = 2 for the top 2% brightness pixels. The

optimal parameters for the GreyBall dataset are: no preprocess-

ing, and using the Shades of Grey method with p = 2 for the top

1% brightness pixels. The optimal parameters for HDR dataset

are: a Gaussian filter as preprocessing, and then the 2nd-order

grey-edge method with p = 8 for the top 1% brightness pixels.

Conclusion
In this paper, we investigate the effects of bright pixels in a

variety of standard colour constancy algorithms. Moreover, we

describe a simple framework for illumination estimation method

based on bright pixels. We have demonstrated that this simple

method does very well compared to well-known colour constancy

algorithms as well as compared to more complex supervised color

constancy methods, over four large standard datasets.
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Table 3: Comparison of the bright-pixels framework with well-known colour constancy methods.

Dataset SFU Laboratory Color Checker Grey Ball HDR

Methods Median Mean Median Mean Median Mean Median Mean

White Patch 6.5◦ 9.1◦ 5.7◦ 7.4◦ 5.3◦ 6.8◦ 4.3◦ 6.3◦

Grey World 7.0◦ 9.8◦ 6.3◦ 6.4◦ 7.0◦ 7.9◦ 7.3◦ 7.9◦

Grey Edge 3.2◦ 5.6◦ 4.5◦ 5.3◦ 4.7◦ 5.9◦ 3.9◦ 6.0◦

Gamut Mapping 2.3◦ 3.7◦ 2.5◦ 4.1◦ 5.8◦ 7.1◦ - -

1st-jet Gamut Mapping [19] 2.1◦ 3.6◦ 2.5◦ 4.1◦ 5.8◦ 6.9◦ - -

Bayesian [16] - - 3.5◦ 4.8◦ - - - -

High Level Visual Information [32] - - 2.5◦ 3.5◦ - - - -

Natural Image Statistics [17] - - 3.1◦ 4.2◦ 3.9◦ 5.2◦ - -

The Rehabilitation of MaxRGB 3.1◦ 5.6◦ - - - - 3.9◦ 6.3◦

Bright Pixels 1.90◦ 5.84◦ 2.61◦ 3.98◦ 4.71◦ 5.72◦ 3.49◦ 5.77◦

Bright Pixels + grey-edge 1.62◦ 2.72◦ 2.61◦ 3.96◦ 4.64◦ 5.57◦ 3.49◦ 5.92◦

The fundamental question which arises in this paper is what

is the probability of having an image without strong highlights,

source of light, or white surface in the real world? Based on cur-

rent standard datasets in the field of color constancy we saw that

the simple idea of using the p-norm of bright pixels, after a local

mean preprocessing step, can perform surprisingly competitively

compared to complex methods. Therefore, we conclude that ei-

ther the probability of having an image without strong highlights,

source of light, or white surface in the real world is not over-

whelmingly great or the current color constancy datasets are con-

ceivably not good indicators of performance with regard to possi-

ble real world images.
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