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Abstract
In this paper we investigate a method for selectively modifying
a video stream using a color contrast sensitivity model based on
the human visual system. The model identifies regions of high
variance with frame to frame differences that are visually imper-
ceptible to a human observer with normal color vision. The model
is based on the CIELAB and the CIE ΔE94 color difference for-
mula, and takes advantage of the nature of frame-based progres-
sive video coding.

The method was found to achieve up to 35% improvement
in data compression without perceptible degradation of the video
quality. As expected, the amount of compression improvement
obtained is dependent on the type of video content being com-
pressed.

Introduction
Compression of video data is becoming increasingly essential in

today’s information age. Video content is growing at an alarm-

ing rate, and the bandwidth requirements to support such video

content are staggering.

This paper investigates a method to selectively discard inter-

frame differences based on underlying assumptions about the hu-

man visual system (HVS). By taking into account the variation of

the sensitivity of the HVS as a function of hue, chroma and light-

ness [1], the method proposed herein selectively attenuates inter-

frame differences based on a variance-weighted chromatic activ-

ity map. In the developed model, the attenuated differences are

then transformed and quantized in a manor similar to the standard

MPEG 2 workflow, and finally encoded using Huffman Coding.

Standardized video coding frameworks have been developed

by the International Telecommunication Union (ITU) and the Mo-

tion Picture Group (MPEG) [2]-[8]. Within these frameworks,

the structure of the decoder is clearly defined, but the method by

which the encoder creates the video stream is left to the discretion

of the author of the encoder [9]. A variety of methods have been

published in the literature to incorporate aspects of the HVS into

the encoder. Zheng, et al [10] developed a method that focused on

spatial frequency sensitivity. Watson et al [11] developed a video

quality metric (DVQ) to compare two video sequences using a

model that incorporates aspects of visual processing. Most no-

tably, Yang et al [12] published a paper on residue pre-processing

based on a just noticeable distortion profile.

The approach of using pre-processing of the video sequence

is not new [13]-[15]. Leung, et al, optimize the compression

based on visual masking. In [16] and [17], the authors evaluate

the performance of various color difference models for moving

images. When evaluating this work, it is important to consider

that the original color difference models were developed using

uniform, static solid patches of color. Applying these models to

moving images introduces a new dimension that is not typically

accounted for by existing color difference models.

In this paper, we outline an approach to pre-processing the

video stream that incorporates principles of color science for still

images and a variance based weighting to account for the impact

of motion. The performance of this method is evaluated by com-

paring the file size of the Huffman compressed bit streams with

and without our method, and by subjective evaluation of the com-

pressed video sequences. The method was found to yield between

1% and 35% improvement in compression without visibly degrad-

ing the video quality. As expected, the amount of compression

improvement obtained is dependent on the type of video content

being compressed.

Theoretical Framework
Inter-frame video coding takes advantage of the fact that not ev-

ery pixel within a video sequence may change significantly from

one frame to the next. By removing the redundancy of unchanging

pixels, the video stream will only code those pixels that are chang-

ing from frame to frame. This results in a significant improvement

in the bit rate. One of the underlying assumptions is that the pixel

differences to be encoded from frame to frame are perceptually

significant. Research in the area of color science has shown that

not all color differences are equally likely to be perceptible, the

HVS sensitivity to changes in color varies as a function of light-

ness, chroma, and hue [18]. This can be seen in Fig. 1 wherein

Figure 1. CIE 1931 xy chromaticity diagram showing MacAdam’s Ellipses

(ten times enlarged) [1]
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Figure 2. Baseline video CODEC workflow for interframe video coding

the enlarged ellipses represent loci of colors that were perceived

as having a just noticeable difference (JND) to an observer. It is

evident that the ellipses in the top-center (green region) are much

larger than those in the bottom left (blue region). This indicates

that an observer is much more sensitive to color changes in the

blues, than in the greens.

More recent developments in color science have led to the

standardization of color difference equations [19], known as the

CIE ΔEab, ΔE94, and most recently ΔE2000 equations. In order to

use such a color difference model, first the colors to be compared

must be converted from the source color space into a perceptual

color space, such as CIELAB. CIELAB models the perception of

a human observer with normal, two degree color vision according

to the simplified form of the CIELAB equations in Eq. 1, where

X ,Y,Z are the tristimulus values of the color under observation,

and Xn,Yn,Zn are the tristimulus values of the reference white.
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For a solid color patch, once the CIELAB coordinates have

been computed for two different samples, the color difference can

then be computed using the color difference equations. ΔE94 and

ΔE2000 are more commonly used because they attempt to account

for the non-linear dependency on hue and chroma of the samples.

The ΔE94 color difference Eq. is calculated using

ΔE94 =

√
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where the constants are defined in [19]. The ellipses of equivalent

just noticeable difference, when converted to the CIELAB color

space calculated using the ΔE94 equation, are shown in Fig. 3. It

can be seen that relative to the CIE ΔE94 equations, the CIELAB

color space is still quite nonuniform in terms of color difference.

It can be seen from Fig. 3 (and Eq. 2) that the perception

of color differences changes as a function of the distance from

the neutral axis (origin) of the a∗ − b∗ diagram. By taking into

account this feature of the HVS, a larger deviation from the actual

pixel color in inter-frame coding can be allowed, as defined by

Eq. 2, without a perceptible loss in image quality.

Video Encoding Workflow
In order to evaluate the potential of such a technique in a video

coder, a baseline video codec workflow was constructed in Mat-

lab, as shown in Fig. 2. This workflow uses an 8×8 block match-

ing Adaptive Motion Estimation (AME) algorithm to determine

the motion vectors from frame to frame, the MPEG 2 Discrete

Cosine Transform (DCT) and quantization scheme, with lossless

Huffman Coding of the inter-frame pixel differences.

The modified CODEC workflow is shown in Fig. 4. It can

be seen that in addition to the standard steps, a weighting is used

to perturb the inter-frame differences based on the colorimetric

properties of the frames under analysis. The following steps are

performed :

1. The motion predicted and current frame are converted

from YUV to CIELAB using the REC 601 primaries and

respective white point. The YUV reference [1,0,0] is as-

sumed to the white point of the scene.

Figure 3. JND Ellipses corresponding to a color difference of ΔE94 = 1.0 in

the a∗-b∗ plane [19]
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Figure 4. Modified video CODEC workflow for inter frame video coding with color difference compression

2. The ΔE94 color difference of every pixel in the image is

computed between the current frame and the motion pre-

dicted frame.

3. It has been well established that the theoretical visual tol-

erance for a just noticeable difference is considered to be

equivalent to one ΔE94 for large area solid color patches

[1][18]. In this case, we are looking at small (pixel sized)

colors that are changing as a function of time. For that

reason, we propose that a variable margin of error be al-

lowed, and define a tone mapping function that maps input

color difference values to an output between 0and1. The

tone mapping function is shown in Fig. 5 for two levels

of color thresholding. This is a tunable parameter that can

influence the bit rate and quality of the resulting video se-

quence.

4. The tone mapped color difference image Tmap and the Δ-

frame are then point-wise multiplied. The difference be-

tween the Δ-frame and the tone mapped response, called

the Δ-loss, is then multiplied by the spatial variance map

Cmap of the motion predicted frame. The resulting image

called the Δ-preservation frame shows the variance of the

pixels that will be removed in the encoding process.

5. Preservation of the color differences in the smooth

regions of the frame is attained by applying a point-wise

summation of the weighted Δ-frame and the scaled

Δ-preservation frame. This is possible because the

detail and texture of the video sequence are masking the

visibility of the change in the color differences.

Therefore, this framework enables the selective compression of

video content based on regions that have small inter-frame color

differences and medium to high variance.

The modified Δ-frame pixels are then transformed and quan-

tized using the MPEG-2 DCT transformation and quantiza-
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Figure 5. Color difference tonemap function

tion scheme, with lossless Huffman Coding, as in the baseline

MPEG-2 CODEC workflow.

Test Framework
In order to compare the compression performance of the proposed

method to the baseline video CODEC, the two video CODEC

workflows were tested for a number of sequences listed in Ta-

ble 1. To determine the bit rate savings, the DCT transformed,

quantized coefficients for each frame are Huffman Coded and ap-

pended to a binary file to simulate the video bitstream. Once all

of the frames have been coded, the size (number of bytes) of the

two bit-streams (with and without the proposed method) are com-

pared and the percent compression improvement is calculated us-

ing Eq. 3.

% Compression = 100×
[

1− size after
size before

]

(3)
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Table 1. Video sequences used in testing

Sequence Format # of Frames

Akiyo cif 300
BigBuckBunny cif 14315

Bridge-Close cif 2000
Bus cif 150

Carphone qcif 382
Caire qcif 494

Coastguard cif 300
Container cif 300

ElephantsDream hd 1127
Flower cif 250

Football cif 260
Foreman cif 300

Hall cif 300
Highway cif 2000

Miss-America qcif 150
Mobile cif 300

Mother-Daughter cif 300
Paris cif 1065

Stefan cif 90
Tempete cif 260
Waterfall cif 260

Given that the improvement is highly correlated to the video con-

tent, a number of video sequences were tested. The video se-

quences used were a range of standard test scenes acquired in the

QCIF, CIF, and HD formats.

Quantitative Experimental Results
The results for compression of the different video sequences com-

pressed using the two different tone maps shown in Fig. 5, are

given in Table 2. The quantization of the DCT transformation is

controlled by a stepsize parameter γ , as shown in Eq. 4. The DCT

stepsize used in the quantization stage of the compressor was γ =

0.25,

QDCT (i, j) = DCT (i, j)
γ Qstepsize (4)

It can be seen from Table 2 that the compression gain can

vary greatly depending on the video sequence. This is not surpris-

ing, since the algorithm is specifically looking for small color dif-

ferences within the scene on a frame to frame basis. Interestingly,

(a) (b)

Figure 6. Sequential frames from the Akiyo video sequence

Table 2. Percent compression improvement over the baseline

encoder when γ = 0.25

Tone Map 1 Tone Map 2
Sequence % Compression % Compression

Akiyo 26.2 30.9
BigBuckBunny 6.1 7.1

Bridge-Close 11.5 31.4
Bus 0.8 1.3

Carphone 9.1 14.6
Claire 20.4 24.0

Coastguard 2.7 5.8
Container 33.1 38.5

ElephantsDream 3.5 5.2
Flower 0.6 1.0

Football 2.8 5.3
Foreman 3.8 5.9

Hall 16.5 37.9
Highway 4.8 11.3

Miss-America 15.0 19.1
Mobile 0.9 1.2

Mother-Daughter 18.6 20.8
Paris 34.5 40.3

Stefan 1.9 2.3
Tempete 1.9 2.1
Waterfall 8.6 10.3

Average 10.6 15.0

the compression gains on video sequences such as Akiyo, Con-
tainer and Paris were very significant. When watching the video

sequences, it was evident that a large majority of the gain was

coming from the background regions of the image that were not

changing dramatically from frame to frame, as shown in Fig. 6.

Although much of the differences from frame to frame were rel-

atively small, it is important to capture the progressive nature of

the image differences. Early attempts at compressing the video

sequences resulted in noticeable visual artifacts appearing on the

left lapel of Akiyo’s jacket. This was addressed by feeding back

the Δ-preservation frame, which attempts to preserve the Δ-frame

changes in smooth regions. This can also be seen in Fig. 7, where

the original frame and the Δ-frame are shown in (a) and (b) re-

spectively. The Δ-loss is then attenuated using the variance image

shown in (c), resulting in the corrected Δ-frame (d). By compar-

ing (b) and (d), one can see that the intra-frame differences in the

grass in the foreground at the bottom of the image and the trees

just above and to the left of the stern of the ship have been com-

pressed more than the differences in the sky and water.

As was expected, other video sequences such as Flower,

Mobile, and Bus did not demonstrate as significant a bene-

fit from the quantization scheme. On average the compres-

sion improvement is around 10% for ToneMap 1 and 15% for

ToneMap 2, which confirms our expectation that the more ag-

gressive ToneMap will yield greater compression.

Qualitative Analysis
In order to assess the visual quality of the video sequences when

using the proposed method, a tool was developed to display

12 © 2012 Society for Imaging Science and Technology



(a) Original (b) Δ-frame

(c) Variance Image (d) Corrected Δ-frame

Figure 7. Intra-frame prediction differences for Container sequence

Figure 8. Visual Comparison GUI

two video sequences side by side for visual comparison [20].

When evaluated in this way, the video sequences quantized us-

ing ToneMap 1 and the video sequences compressed with the

benchmark reference encoder were indistinguishable to the au-

thor (MQS). When comparing the video sequences quantized us-

ing ToneMap 2, some slight differences were visible, but only

after many iterations of studying the same video sequence.

Conclusions
We have developed a method to improve the compression rate of

the MPEG 2 framework (using inter-frame progressive coding)

using a color contrast sensitivity model based on the HVS. The

model is based on the principles of color discrimination, and a

variance map to model the spatial activity of the motion predicted

frames. Given that a human observer has particularly low sen-

sitivity to small color differences in regions of high chroma, a

different weight can be given to areas satisfying these properties

in order to control the compression rate.

The quantitative analysis, using 21 different video se-

quences, shows that the compression savings greatly depend on

the video content, obtaining gains to up to 35% with averages of

10% for ToneMap 1, and 15% for ToneMap 2. The visual quality

of the compressed video sequences was assessed by one of the au-

thors (MQS) and found to be indistinguishable for the sequences

compressed with ToneMap 1.

In order to better understand the implications of this ap-

proach in a video coding workflow, the authors are investigating

the possibility of implementing the algorithm directly into the JM

Reference Coder. This would enable a comparison against the

current industry standard encoding scheme H.264.
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