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Abstract
Visual attention models (VAM) try to mimic the human visual

system in distinguishing salient regions from non-salient ones in

the scene. Only a few attention models propose to detect salient

motion in surveillance videos. These model utilizes static fea-

tures such as color, intensity, orientation, face, and dynamic fea-

tures such as motion to detect most salient regions in videos. This

motivated us to propose a compression algorithm based on vi-

sual attention model that is developed specificly for surveillance

videos. In this paper we are using a state of the art visual attention

model developed by combining bottom-up, top-down, and motion

cues. Based on its similarity with experimentally obtained gaze

maps evaluated both visually and with quantitative measures, a

compression model based on this attention model is proposed for

H.264/AVC encoded videos. Our experimental results show that

we can encode videos with same or better quality than those ob-

tained with the standard baseline profile of the JM 18.0 reference

encoder, while reducing the file size uptil 22%.

Introduction
Human visual system is attracted by salient objects or events.

This is done unconsciously and effortlessly in the visual system

when light passes through retina cells to the complex cells of the

primary visual cortex. The retina cells distribute the light sig-

nal into two main outputs [1, 2], thanks to two different kinds of

ganglion cells : magnocellular and parvocellular ganglion cells.

Magnocellular ganglion outputs provide global information of the

scene that contain lower bands of spatial frequencies. While par-

vocellular ganglion outputs provides detailed information of the

scene, or high frequency components of the scene. The two sig-

nals then pass through cortical-like filter that decomposes these

signals into elementary features by a bank of filters. The cortical-

like filters give dynamic and static information of the scene in

their output, that could be named as static or dynamic saliency

maps. The ganglion cells output enhances contrast that attracts

human gaze [3]. It is a rather challenging task to model such

a complex phenomenon of human vision. Such computational

models can however be used in many image and video process-

ing applications such as compression, event detection, perceptual

quality evaluation, etc. Most of the time due to high compression

ratio, it is impossible to recognize people faces in surveillance

videos [4]. VAM can be used as Region of interest (ROI) for

compression algorithms which help increase the quality of salient

regions of surveillance videos.

A region of an image or scene become salient when low level

features such as color, texture, binocular disparity, intensity, ori-

entation or motion etc. differ significantly from its variation in

its neighborhood. Saliency is a unit that helps to determine the

capability of attracting visual attention towards some region of

an image [5, 6]. There are many factors involved in identifying

these salient regions in a visual scene. These factors or visual

cues are generally categorized into two groups, bottom up, and

top down visual cues [7, 8]. The bottom-up stage of human vi-

sual system processes the input scene/image in parallel and pre-

attentive manner and forward this information to a serial, atten-

tive and computationally intensive top-down stage. In bottom-up

approaches our visual system computes the salient regions from

low-level features such as color, intensity, orientation, etc. It is ev-

idently proved that human visual system combines low-level fea-

tures in the early stage [6, 9]. Saliency computation models based

on information theory have successfully model human attention

from these local features [10, 11]. A famous computational model

of bottom-up attention proposed by Itti and Koch [12], uses low

level features such as color, intensity and orientation. Top-down

approaches involve more complex visual activity such as object

detection, face detection, etc. It is performed very fast and effi-

ciently in human visual system. Combining bottom-up and top-

down approaches guides the visual system towards the salient re-

gions or regions of interest [13, 14, 15] in a visual scene. It is

observed that the human visual system diverts the attention to

faces 16.6 times more than other similar regions [16]. There-

fore, face detection can significantly improve the short-comings

of static saliency models such as Itti’s saliency model [12], GBVS

[17] and GAFE [18]. In [19], face detection as top-down visual

cue is combined with Itti and Koch bottom up saliency computa-

tional model [12] which gave promissing results. Bottom-up and

top-down approaches can help us make a model which can detect

salient regions in an image, but what about detecting saliency in

videos? Videos have an extra dimension, which creates, a percep-

tual feeling of motion in human brain. Motion has great influence

on identifying the salient regions in a complex dynamic visual

scene. Many models have been introduced in the literature to de-

tect salient motion [20, 21, 22, 23]. The dynamic visual selective

attention approach proposed by [24] is not good in detecting mov-

ing regions as salient regions. An improved version of this model

is proposed by [25], the improved model uses the information of

each frame to obtain a dynamic saliency map.

Most saliency computational models [26, 27] are inspired by

feature integration theory [28] also called late fusion of features in

[12]. These models extract low-level features and integrate them

to get salient regions. The question that can be raised on these

models is how to combine low-level and high-level features to

mimic human visual system? In [29], authors have proposed to

use the neural networks for combining the visual cues or features

such as color, intensity, orientation, faces and salient motion into

a saliency model. We are using visual attanetion model proposed

in [29] for compression of our surveillance videos.

Video compression standards like MPEG-2, MPEG-4 and

H.264/AVC make use of a rate control algorithm to control the

size of the encoded videos, so that they meet the bandwidth re-
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quirement imposed by each application. This mechanism ensures

that it is possible to feed data to the applications in a fluent man-

ner. Several methods have been proposed to control the bitrate

of the encoded videos while maximizing their quality. In this

model, we propose to use information obtained from visual at-

tention model, i.e. saliency maps to increase the quality of those

areas that are more salient in the scene and reduce the quality of

less salient areas.

Normally, all the pixels are allocated the same amount of

resources by the encoder, regardless of their importance in the

scene. However, if we consider that some parts of the video might

be less important to a human observer than others, there is no rea-

son why the same amount of resources should be allocated to all

the pixels in the scene. For example, an observer might uncon-

sciuosly be more attracted towards areas such as human faces, or

pay more attention to familiar objects that might be of interest

in specific situations – like, for instance, a suspicious backpack

in a surveillance video, or the main character’s face in a feature

film.In this model, we take those observations into account by as-

suming that the more salient pixels are those which viewers are

more likely to look at, thus encoding them with a higher amount

of bits – which, in turn, results in a higher quality. At the same

time, we want to maintain the mean average difference (MAD)

with the original video at frame level, which means that we must

also lower the quality of less salient pixels.

In this paper we have reimplemented the model described in

[29], improving the results by maintaining – or even reducing –

the bitrate of the resulting videos, while maintaining or increasing

their quality.

The rest of paper is organized as follows, in the next section

we will describe the visual attention model that we have used for

video compression. In later section the computation of the quanti-

zation parameter in the compression model is presented. Then we

describe the compression experiment results. Finally we conclude

the paper and point to some future directions.

Visual attention model

This section explains the visual attention model [29] used

in this paper. This VAM includes top-down, bottom-up visual

cues and salient motion information. Bottom-up visual features

such as color, intensity and orientation are used in our proposed

model. The method of computing bottom-up visual cues in [12]

is adapted in this model. Apart from bottom-up visual cues, top-

down visual cue i.e. face is also incorporated in this model. Faces

have significant importance in surveillance videos and attract hu-

man visual attention [16] much more than other objects or regions.

A similar model that incorporates bottom-up and top-down visual

cues for images has been presented in [19]. The VAM proposed

in [29] also include salient motion in addition to bottom-up and

top-down visual cues, and the method of salient motion is inspired

by [20].

Several static or stationary saliency models have been pro-

posed in the literature, the famous ones include Itti and koch [12],

GAFE [18], GBVS [17]. But the most popular stationary saliency

model is the one proposed by Itti and Koch [12]. This model

generates the saliency maps based on the combination of color,

orientation and intensity conspicuity maps(color Cc, intensity Ci,

and orientation Co). Itti’s saliency model computes the saliency

Figure 1: Visual attention model.

map by averaging the three conspicuity maps :

SMitti =
1

3
(Ci +Cc +Co) (1)

Apart from low-level saliency features, experiments show that

high level features such as faces attract more attention than the

other low-level features [16, 30]. Itti’s saliency model is based

on low-level features and does not consider high-level features,

that is why it does not perform well for complex scenes that have

faces, or other objects. To overcome this problem, a model that

incorporates high level visual cues such as human faces is needed

for surveillance videos. There is not so much research done on

high level feature’s use in saliency models. A saliency model pro-

posed in [19] uses color, intensity, orientation and face features.

This model gives 33% improvement in the saliency maps for the

images with faces in them. The authors in [19] have used the face

detection model by Walther et al [31]. They have proposed that

face conspicuity map CFace are important and their experiment

shows that they should be given four times higher weightage than

the low-level features in the combination step. Equation 2 de-

scribes the resultant saliency model.

SMSharma =
1

7
(Ci +Cc +Co +4CFace) (2)

The model shown above provides an overall 33% performance

improvement over other stationary models [19]. In this paper we

have used the attention model that use face features, low-level

features and motion feature together as shown in figure 1. As you

can see in the figure, this model also use salient motion. Salient

motion is the motion that grabs or attracts the attention of the

viewer. Salient motion detection is a complex phenomenon that

depends highly on the specific scene, environment, or scenario.

It is also heavily dependent on the viewers interests and interpre-

tation. So normal motion detection methods such as Lukas and

Kanade method are not enough to detect the salient motion. Be-

cause if we use temporal difference of adjacent frames or compute

the motion vectors from one frame to another, we might be able

to find the moving regions of the image. But it cannot distinguish
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between regions with salient motion and regions with non-salient

motion. For salient motion detection the non-salient motion has to

be filtered out or ignored. Therefore in addition to motion detec-

tion models we also need a filter that can filter out non-salient mo-

tion. Literature has much research work done on salient motion

detection [20, 32, 33, 21]. A Motion saliency map using spatio-

temporal energy accumulation of coherent moving objects by Ga-

bor filtering is proposed by [21]. Another salient motion detection

algorithm proposed by [32] is using the motion vectors magnitude

and phase histograms. These histograms are later combined by a

proposed formula in such a way that the motion entropy of the

salient regions increase.

The authors in [20] proposed a method based on temporal

differencing, filtering and segmentation. [29] has proposed salient

motion model, that uses Gaussian filter instead of segmentation

as the last step of salient motion detection model, to make salient

motion detection more robust for real time videos.

Combining different conspicuity maps or visual cues such

as color, intensity, orientation, face and motion into one saliency

map is a challenging task. It is vital to consider HVS perception

characteristics during the combination phase. We need to mimic

the neurons between retina and the visual cortex, and the best way

to do it, is through learning from known gaze maps and neural

networks. The method proposed in [29] uses neural network to

combine the visual cues. The neural networks can be trained by

using the provided input-output datasets. In training phase, inputs

will be visual cues, low-level visual features and gaze maps ob-

tained from psychophysical experiment for a given set of surveil-

lance videos are used as output. In this way, neural networks can

learn and mimic exactly the behavior performed by the neurons

in the HVS. Every neural network is based on several neuron lay-

ers. One neuron can be considered as a summing device that has

inputs and produces output. To be more precise, a neuron also

has some sort of weighting mechanism. The inputs of the neuron

are multiplied by the corresponding weights and the sum of these

products is sent to the output. The neurons can be placed in 3

different layers of a neural network. These three layers are called

input neuron layer, hidden layers, and output layer. Each neural

network has to be trained before being utilized for actual task.

During training neurons get the inputs and corresponding outputs

so that it can learn and configure the weights of each neuron in

the neural network. In the next paragraph, neuron functionality is

explained in greater detail.

The basic neuron consists of an activation function

F(weightedSum T) where weightedSum is weighted sum of the

inputs and T is the threshold as shown in eq.3. The weights are

initialized to random values and get updated in the training phase.

weightedSum =
n

∑
i=1

weighti ∗ inputi (3)

Various functions can be used as activation function F . Sig-

moid function is used as activation function in this paper. The

sigmoid activation function is shown in eq.4 and eq.5.

σ(x) =
1

1+ e−x
(4)

dσ(x)

dx
= σ(x)∗ (1−σ(x)) (5)

The most basic one is Back Propagation Neural Network

(BPNN). The property of BPNN is that it back propagates the

output through the neural network to update the internal weights

of each neuron. BPNN learns in such a way that any mistakes or

errors made during the training phase is sent backwards through

the network to correct the weights. This process is called back-

ward propagation of errors. The back propagation requires the ac-

tivation function used by the artificial neurons or network nodes

to be differentiable. This learning method is called supervised

learning method, and is a generalization of the delta rule. The

learning phase of BPNN is divided into two phases: propagation,

and weight update phase. The propagation phase involves 2 steps:

1. Forward propagation of training datasets through the FFNN,

to generate the neurons output activation.

2. Back propagation of the neurons output activation through

the network with training pattern’s target to generate the

deltas of all outputs and hidden neurons.

The weight updation phase include 2 steps.

1. Get the error gradient of the weights by multiplying the out-

put delta and activation. The error gradient can be computed

by eq.6.

δk = yk(1− yk)(dk− yk) (6)

where yk is the value at output neuron k and dk is the de-

sired value at output neuron k. Error gradients at output

and at hidden layers are different. The hidden layers error

gradient is based on the output layers error gradient due to

back propagation. The error gradient for each hidden neu-

ron is the gradient of the activation function multiplied by

the weighted sum of the errors at the output layer as shown

in eq.7.

δ j = y j(1− y j)
n

∑
k=1

w jk δk (7)

2. Subtract the ratio of the gradient from the weight, that is

called learning rate that influences the speed and quality of

learning. The sign of the weights gradient represent the di-

rection where the error is increasing. The weight updation

equations are shown in eq.8,9,10,11.

wi j = wi j ∗∆wi j (8)

w jk = w jk ∗∆w jk (9)

where

∆ wi j(t) = α.inputNeuroni.δ j (10)

4 © 2012 Society for Imaging Science and Technology



∆ w jk(t) = α.hiddenNeuron j.δk (11)

where α is learning rate and δ is error gradient.

Repeat the propagation and weight updation phase until the neural

network converges. There are other internal factors like number

of hidden neurons, number of iteration of the datasets, learning

rate and momentum that can help the network to converge. For

right combination of these values, alot of testing is required.

Computation of the quantization parameter
We propose an alternative model to compute the QP. Our

method computes a new QP for every macroblock in each frame

– as opposed to the method used in H.264, which computes a new

QP for every frame – from the saliency values obtained from the

corresponding saliency maps. The number of bits allocated for

a given frame in the standard H.264/AVC rate control algorithm

is computed based on a Mean Average Difference (MAD) crite-

ria. The bitrate is related with the MAD and QP according to the

following formula [34]:

Ti = c1
MADi

Qstepi
+ c2

MADi

Qstepi
2
−hi (12)

where T is the assigned bitrate for the basic unit, Qstep is the

quantizer step size (from which QP is computed), hi corresponds

to the number of bits due to overhead data, and c1 and c2 are

model coefficients.

Depending on the configuration used, the bitrate can be fixed

in advance – in which case the encoder gives preference to the bi-

trate over the quality, adjusting the QP dinamically to maintain

a constant MAD – or variable – in which case the quantization

is fixed in advance, having preference over the bitrate. We pro-

pose a hybrid approach, where the QP changes dynamically for

every macroblock, but aiming for a target bitrate by keeping the

average QP constant at frame-level. For each macroblock, the

corresponding saliency values are obtained from the saliency map

of the frame it belongs to. The saliency of all the pixels in the

macroblock is then averaged. Once the average saliency has been

computed for all the macroblocks, we can compute how much

each macroblock deviates from the average saliency, and assign

the corresponding QP accordingly so that, in the average, the QP

is still constant for the entire frame. The QP is calculated as fol-

lows:

QPi =
⌈

QPf − (si− s) ·W
⌉

(13)

where QPi is the QP for macroblock i, QPf is the target QP

at frame level, si is the average saliency of all the pixels in mac-

roblock i, s is the average saliency of all the macroblocks in the

frame, and W is a weighting factor. Let us note as Di the absolute

deviation of the saliency of macroblock i from the average, so that

Di = (si−s). Then we compute the weighting factor W according

to the following rule:

W =

{

−Di ·min{QPf −QPmin,QPmax/3} where Di > 0

Di ·min{QPmax−QPf ,QPmax/3} where Di ≤ 0
(14)

where QPmin and QPmax are defined by JM as 0 and 51 re-

spectively. We must take into account the amount of overhead

introduced by changing the QP very often. The Delta QP (DQP)

is the difference between the QP assigned to the same macroblock

in two consecutive frames. This means that, as the range of pos-

sible values for QP increases, so does the DQP and, in turn, the

overhead data. Indeed, if QP can take values within a high inter-

val, small changes in the saliency might translate into big changes

in the QP, therefore increasing the DQP; this is especially true in

the case of scenes with a lot of motion where the pixels change

very rapidly from one frame to the next. In our model, we use

the weighting factor W to constrain the QP range within a certain

limit, so that the quantization of a given macroblock will always

be, at most, in the interval QPf ±QPmax/3. After testing with sev-

eral values, this range proved to be the best compromise between

quality improvement and amoun of overhead data.

The amount of salient pixels in a frame tend to be much

smaller than then amount of non-salient pixels; in fact, most pix-

els normally have a zero saliency, whereas only a small amount

of them will be over zero, which means that the average saliency

in a frame is typically very low –nearly zero. From equation 13

we can observe that the amount of units that the QP is increased

or reduced for each macroblock is directly dependant on the devi-

ation from the average Di of the saliency of the macroblock. This

way, frequent low-saliency macroblocks will get assigned a QP

similar to the average, whereas less common ones with a higher

saliency will get assigned a much lower QP –corresponding to a

much higher bitrate; with this mechanism, we make sure that the

average QP is maintained.

Experimental Results
In this section we will show the experimental results ob-

tained with our model, and compare them quantitatively and qual-

itatively with the results obtained with the standard H.26/AVC

algorithm. We have performed two experiments. The first one

is about quanitative comparison and second one is psychophys-

ical experiment. In quantitative experiment, we have compared

the two output videos using quality matrices and in pscyhophys-

ical experiment we have obtained the results from the subjective

experiment. The first experiment is quantitative experiment, for

this purpose, we use a reference software which implements the

standard methods in the H.264/AVC standard. The reference soft-

ware that we used in this project is JM 18.0 [35]. Five different

surveillance videos were tested: videos 1, 2 and 6 belong to the

iLIDS dataset of the IEEE International Conference AVSS 2007,

and contain images from a surveillance camera at a subway sta-

tion. Video 3 shows a man picking an object from a store and

leaving. Video 4 shows people passing by at a waiting room

in a train station. We tested our model for different QP values,

and compared the results with the ones obtained by the standard

model. Firtly, 25 was chosen as the middle point between the

maximum and minimum possible quantization, and then different

increments were tested between 25 and 45 –at this point features

start to be unrecognizable.

The JM encoder works with configuration profiles, where

most encoding parameters – including the QP – are set up. For

this experiment we chose the baseline profile, which uses only I-

frames and P-frames. The reason to choose this profile is that our

tests showed that using B-frames resulted in additional encoding
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time that did not compensate the improved performance.

We used several metrics to compare the results. For this

model, common metrics such as PSNR or SSIM [36] are not rep-

resentative because, given that the average QP at frame level is

the same, these metrics also yield similar results in the average at

frame level. Therefore, we chose to focus on specific areas where

we know that the saliency is high, comparing the results with the

standard model. Figure 2 shows how the ssim index in the frame

encoded with our model is much closer to one – an ssim index of

one means that the image is identical to the original – than the one

encoded with the standard model. We can see that the areas con-

taining the face and the lights in the upper left corner will be given

a higher quantization than the darker areas which do not contain

relevant information for the viewer.

Figure 2: From left to right and up-down [a,b,c,d]: Closeup from frame

650 of video 1; saliency map for the zoomed area; SSIM disparity map of

the frame obtained with the standard model; SSIM disparity map of the

frame obtained with our model.

If we look at the entire frame from which the patch in fig-

ure 2.a was taken, we can see that the ssim index of the frame

obtained with the standard model is 0.9497, whereas the frame

obtained with our model has an index of 0.9395. Again, since

some macroblocks have worse quality than others, this decreases

the global ssim index. Hoewever, this is not a problem because

we are only interested in the salient areas. Indeed, the ssim index

corresponding to the images in figure 2.c and 2.d, respectively, is

0.8917 and 0.9413, which shows that our model clearly achieves

much better quality in areas of high saliency.

Another point to compare is the file size against the visual

quality. Our results have shown that using an intermediate value

between the maximun and minimum possible QP – that is, 25

since, as we mentioned earlier, the minimum is set at 0 and the

maximum at 51 – results in files of a simillar size to those encoded

using the standard model. However, as we increase the quantiza-

tion, we can also observe an increase in the amount of overhead

bits which are added to the bitstream. As we explained earlier

in quantiztion parameter section, this increase in the amount of

overhead data is due to the fact that using higher QPs implies a

higher range of QP values for salient macroblocks. This, in turn,

translates into an increase in the DQP. Using a weighting factor –

as shown in equation 13, – constrains the QP range, thus reducing

the overhead data.

Furthermore, the QP for the chroma component is rescaled

for high values [34] – above 39, – which means that the chroma

components might not keep the average quantization because the

amount of under-quantized bits will be higher than the amount

of over-quantized bits, resulting in higher-size videos than those

obtained with the standard model.

We have presented the final results for 3 videos of our dataset

in figure 3, we have computed the file sizes of these videos for

avearge frame QPf of 25, 30 and 35 when compressed with or

without saliency maps. The zero line in the graph show the

video size when encoded JM baseline encoder withouth using the

saliency maps. It can be noticed in the graph 3 that if we use QP =

35 then we always increase the filesize while improving the qual-

ity of video. But if we use lower quality improvement, i.e. QP

= 30 or QP = 25, we get quality improvement while reducing the

file size. These are our preliminary results, in the final paper we

are planning to add the results of two more videos and the results

from our psychophysical experiment.

Figure 3: %age increase/decrease in saliency based compressed file size

when compared with non-saliency based compressed file.

The subjective quality experiment is performed where 33

subjects participated, the participants ages varies between 20 and

50 years. Each subject has been shown 9 sets of videos, each

video set contains two videos, one video with H.264 compres-

sion and the other with attention model based compression. The

videos are displayed on a computer screen in normal viewing

conditions and under normal luminance. The subjects were pro-

vided 3 options: Video-1’s quality is better than Video-2’s quality,

Both are same(no quality difference), Video-2’s quality is better

than Video-1’s quality. The score is calculated by assigning 1

when the subject choose H.264 compressed video over attentional

model based compressed video, 2 for when the subject did not find

any qulity difference in both videos, and 3 when the subject has

choosen attentional model based compressed video as the better

quality video. The mean opinion score of the experiment is shown

in table 1. The graph of subjective experiment results is shown in

figure 4. The mean opinion score of subjective results for most

of the video is around 2.0, it shows that the attention based com-

pressed video has same quality as the non-attention based com-

pressed video. It also implies that we have reduced the file size of

the compressed video by using the attention model.

Conclussion and future directions
In this paper, an attentional model is used for two basic rea-

sons, one to reduce the file size without quality degradation, sec-

ond to improve the video quality without increasing the filesize.

The experimental results show that our model is capable of ob-

taining videos with the same or better quality while reducing the

file size. The file size of videos obtained with the standard refer-

ence encoder JM is used as ground truth and we manage to reduce
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Table 1: Subjective Experimental Results

Video set # Mean Opinion Score

1 2.15

2 1.85

3 1.73

4 2.03

5 1.94

6 2.09

7 2.06

8 1.97

9 2.00

Figure 4: Subjective results graph for video set 1 to 9.

the file size upto 22%.

Our tests have been done with surveillance videos, but this

model could easily be applied to any other type of videos where

non-salient information is not to be paid as much attention by

the observers. However, it is worth noting that, in general, the

saliency maps are not available to the encoder beforehand, so a

practical application of this model should integrate in the encoder

the visual attention model to generate the saliency maps. Al-

though using saliency maps at the encoding stage requires several

additional operations, our tests have shown that our model only

adds a small fraction of computation time – around 0.15% at most.

Nonetheless, as mentioned above, the generation of the saliency

maps will add an additional time, so one must pay attention to

whether or not this approach could be adequate for the desired

application. The psychophysical experimental results show that

we have produced compressed videos using attention model with

smaller size than the one compressed by H.264 encoder. How-

ever the quality of attention based compressed videos is similar

or better than the one compressed using H.264 encoder.
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