
IS&T and SID’s 2nd Color Imaging Conference:  Color Science, Systems and Applications (1994)—121

Abstract

Color sensors in scanners and color copiers are not colo-
rimetric—RGB values are not a linear transformation
away from device-independent XYZ tristimulus values.
For a given set of targets or dyes one can readily find a
best linear transform or use interpolation. However, when
the possible targets are unknown, a data-independent
transform is needed.

Here, we set out a very simple linear transform for
forming XYZ from RGB,  developed in analogy with a
well-known solution for the color constancy problem in
computer vision, based on using narrow-band sensors.
In a scanner, we know the illuminant. Therefore the color
constancy paradigm— illumination-independent col-
ors—is not applicable. Instead, we change filters—from
RGB to XYZ. The von Kries adaptation form of the color
constancy solution can then apply if we can “sharpen”
both the RGB sensors and the XYZ color-matching func-
tions. Recently, we developed just such a “sharpening”
basis transform: most of the sensitivity of the new pos-
sibly partly negative sensors is isolated in a particular
wavelength interval. Here we “sharpen” both sensor sets;
after dividing by sharpened white-spot values an inverse
transform results in recovered XYZ values. Applying the
method to 462 Munsell chips yields a median CIELAB
error of only 3 units for two different systems.

1. Introduction

Color sensors in scanners and color copiers are not colo-
rimetric, in the sense that when three filters are employed
the resulting RGB values are not a linear transformation
away from the X, Y, Z tristimulus values1 that would be
produced by integrating the color signal impinging on
the optical system with CIE color-matching functions.2
The transformation from RGB to XYZ forms the first
step in developing a device-independent description of
color for these devices.3 For a given set of targets or set
of dyes one can readily find the best linear transform, or
else use interpolation and look-up table.4,5,6 When pos-
sible targets are unknown, a data-independent transform
is needed.7

Here, we set out a very simple linear transform for
forming XYZ from RGB. The transform is developed in
analogy with a simple solution for the color constancy
problem in computer vision. The color constancy prob-

lem is concerned with the observation that the human
vision system can correctly identify colors in a manner
more or less independent of the incident illumination,
e.g., grass looks green, and more or less the same shade
of green, whether or not clouds cover the sun.

It has long been known that the color constancy
problem has a simple solution provided it is possible to
make observations using very narrow-band sensors. Sup-
pose an illuminant with spectral power distribution (SPD)
E(λ) impinges on a surface with spectral reflectance
function S(λ). Then if the filter- optical system has
transmission profile r(λ) the resulting signal is,
R = E(λ )S(λ )

ω∫ r(λ )dλ , integrating over the visible spec-
trum ω. If there are three color sensors r (λ), then the
measured RGB values are

R = E(λ )S
ω∫ (λ )r(λ )dλ (1)

(showing vector quantities by an underscore).
The color constancy problem consists of recovering

RGB values R  formed under one illuminant from RGB
values taken under another illuminant.  The simplest
model of color constancy is a “diagonal matrix trans-
form” (DMT);  in this model one simply multiplies each
channel R, G, B by a different number separately. If a
DMT holds then for a reference reflectance SW(λ), and
two illuminants E1(λ), E2(λ), for the particular reflec-
tance of interest S(λ) one must have

E1(λ )S
ω∫ (λ )r(λ )dλ

E1(λ )Swω∫ (λ )r(λ )dλ
=

E2 (λ )S
ω∫ (λ )r(λ )dλ

E2 (λ )Swω∫ (λ )r(λ )dλ
(2)

where here we stack together all three channels: the equa-
tion represents three separate equations, one for each
channel. One can see that if sensor sensitivities r (λ) were
very narrow-band, then eq. (2) would indeed hold. Eq.
(2) embodies the notion of von Kries adaptation to chang-
ing illumination.

The denominators in eq. (2) are often called “white-
spot” values because the reference reflectance is typi-
cally white.

In a scanner or color copier, we know the illuminant.
Therefore eq. (2) is not the appropriate equation to use.
However, a very similar situation obtains if we are inter-
ested in the relationship between measured RGB and
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tristimulus values XYZ. If we use 1931 CIE color match-
ing functions x(λ ), y(λ ), z(λ ),  collectively denoted x
(λ), then the three tristimulus values XYZ are given by

X = E(λ )S
ω∫ (λ )x(λ )dλ (3)

By analogy with (2) we consider the integral ratios

E(λ )S
ω∫ (λ )r(λ )dλ

E(λ )Swω∫ (λ )r(λ )dλ
=

E(λ )S
ω∫ (λ )x(λ )dλ

E(λ )Swω∫ (λ )x(λ )dλ
  (4)

where now the illuminant is the known scanner illuminant
E(λ). Once again we see that narrow-band sensors can
help make eq.(4) hold, provided both  r(λ) and x (λ) are
narrow-band and also provided that they are both nar-
row over the same wavelength range.

At first, this seems to be asking too much. However,
we show below that it is possible to transform the set of
sensors r(λ) via a linear “sharpening transform” TR into
a new, sharpened set r#(λ).

Moreover, we can spectrally sharpen both sets of
sensors r(λ) and x(λ) over the same wavelength inter-
vals, concentrating each sensor set into three wavelength
intervals, short, medium, and long wave. If the sharpen-
ing linear transformations are TR and TX  for the sensor
sets r(λ) and x(λ) respectively, then we can reasonably
ask that for any surface reflectance S(λ) we have

E(λ )S(λ )T R r(λ )dλ
ω∫
E(λ )SW (λ )T R r(λ )dλ

ω∫
=

E(λ )S(λ )T X x(λ )dλ
ω∫
E(λ )SW (λ )T X x(λ )dλ

ω∫ (5)

Since all quantities in (5) are known except the nu-
merator of the right hand side, and since we shall also
know TX, then we can effectively retrieve the unknown
tristimulus values XYZ (for the scanner illuminant) from
the measured RGB values.

Below, in §4, we show how to further transform these
recovered values into the standard tristimulus values for
standard illuminant D65.1

But first, in §2 we show how to calculate the sharp-
ening transforms TR and TX. In  §3 we note that the trans-
forms do not have to be calculated independently, and
discuss a new optimization scheme for finding one trans-
form in terms of the other.  In §5 we examine how well
the approximation performs for a large set of measured
spectral reflectance functions for one system; §6 de-
scribes results for a different, 3-pass, system and shows
how the anaysis can be applied to such systems. Finally,
§7 presents conclusions.

2. Spectral Sharpening

In Ref. 8, we showed how to devise a linear transform T
for forming combinations of a set of three sensor func-
tions r(λ) that are as narrow-band as possible in a par-
ticular wavelength interval. In contrast to previous work
on this problem9, we do not insist that sensors be all
positive, and our approach is analytic.

Suppose we wish to sharpen over a wavelength in-
terval, a subset of ω. Let φ be all wavelengths in ω ex-
cluding the sharpening interval. Suppose we form a linear
combination of the three sensors, r(λ)tc, with coefficient
vector c.  Here a t superscript denotes a transpose, so we
are taking a dot-product of c with r(λ). Then we wish to
choose c  so as to minimize the least-squares optimiza-
tion integral

min τ1 = [r(λ )t c
φ∫ ]2 dλ (6)

However, normalization is important: the best solu-
tion of (6) is c ≡ 0 . Therefore we impose a normaliza-
tion condition by augmenting the optimization equation
with a Lagrange multiplier term:

min τ = τ1 + µτ2 , τ2 = [r(λ )t

ω∫ c]2 dλ − 1 (7)

The Euler equation for this problem results from
taking the derivative with respect to c :

     r(λ )(
φ∫ r(λ )t c)dλ + µ r(λ )(r(λ )t c)dλ

ω∫





= 0 (8)

The normalization constraint is recovered by taking
the derivative with respect to the Lagrange multiplier µ.
Then one must solve eq. (8) subject to the constraint hold-
ing.

Define the 3 × 3 matrix M(α ) = r
α∫ (λ )r(λ )t d(λ ) ;

then (8) becomes

M(φ )c = µM(ω )c (9)

Thus the solution for the set of coefficient vectors c
amounts to an eigenvalue problem

[M(ω )]−1 M(φ )c = −µc (10)

There are three solutions: we choose the eigenvec-
tor which minimizes τ. The calculation must be repeated
for each of three wavelength intervals. We note in Ref. 8
that both the eigenvalues and the eigenvectors of the
above equation are necessarily real-valued.

Making a choice of three separate wavelength inter-
vals, we arrive at three different coefficient vectors c.
Collecting these together, we have a 3 × 3 sharpening
matrix T. Here we adopt the sharpening intervals used in
Ref. 8:  400-480, 510-550, 580-650nm. Integrals are ap-
proximated by summation over spectral samples sampled
every 10nm. The visible spectrum is 400-700nm. In Fig-
ure 1(a) we show the original, unsharpened CIE func-
tions x(λ) and the sharpened set of sensors x#(λ). The
relationship between them is

x # (λ ) = T X x(λ ) ,

T X =
0.02809 − 0.03359 0.26364

0.50713 − 0.17050 − 0.08209
− 0.37580 0.55150 0.04542









 (11)

Here, x(λ) is a 3 × 3 matrix comprised of the three
CIE color-matching functions. In Figure 1 (a) the
unsharpened functions x(λ) are normalized for display.

As well, we show in Figure 1 (b) how another sharp-
ening transform TR affects a typical set of CCD sensor
response functions r(λ). Here we use the response vec-
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tors for a Sony DXC151 camera with infrared filter.
These sensitivities are similar to the scanner sensitivi-
ties shown in Ref. 4. In Figure1 (c) the two sharpened
sets x#(λ) and r#(λ) are displayed for comparison. Every
curve has norm 1.

(a)

(b)

(c)

Figure 1. (a) Sharpening of x(λ ), y(λ ), z(λ )  curves. (b)
Sharpening of RGB sensor curves. (c) Comparison of sharp-
ened curves x#(λ) and  r#(λ).

Since the two sets of sensors x(λ) and r(λ) are sharp-
ened similarly, we could put the sharpening transforms
TX and TR into eq. (5) and hope to do well. However,
first we consider below how the spectral sharpening para-
digm may be altered in the present case, where two sets
of sensors must be simultaneously sharpened.

3. Relative Spectral Sharpening

Since we wish to sharpen both sets of sensors x(λ) and
r(λ) we could consider a minimization akin to (7) in
which two terms τ1 appear, one for each sensor set. How-
ever, the resulting equations are difficult to solve. In-
stead, we consider TX fixed and attempt to find a set of
sharpened r#(λ) that are as close as possible to the sharp-
ened set  x#(λ).

Therefore we add an additional term

τ3 = [r
ω∫ (λ )t c − x # (λ )]2 dλ (12)

However, since such a term will set the normaliza-
tion of r#(λ) we omit the term τ2 which served to impose
a normalization condition;  x#(λ) is already normalized.

We cannot ask that (12) hold as a Lagrange multi-
plier term since that would imply that r#(λ) is simply the
best projection r#proj(λ) of the three vectors r(λ) onto
the space spanned by the three vectors x#(λ).  Instead,
we ask that the minimization proceed with a certain
amount of τ3 added: we ask for a sharpened set of sen-
sors that are also close to the sharpened color-matching
functions.

Therefore we minimize

min τ = τ1 + ατ3 (13)

The Euler equation corresponding to this problem
is

M(φ )c + αM(ω )c = α f ,

where f = r(λ )t x #

ω∫ (λ )dλ ,
(14)

for the particular sharpening interval being considered.
Note that as α → ∞  eq.(14) goes over to the equation
for the projection of r(λ) onto x#(λ) (the transformed
RGB sensors closest  to the sharpened color-matching
functions):

M(ω )c# proj = f ;r# proj (λ ) ≡ r(λ )t c# proj (15)

For α→0, the solution is c=0.  However, one can
show that this solution is actually a zero-norm multiple
of the sharpest possible set of sensors, that set resulting
from sharpening r((λ) independent of x#(λ) using eq. (9)
for set r(λ). Denote this “sharpest” set of sharpened sen-
sors by r##(λ) .

Hence, we find that it is possible to determine sharp-
ened sensor sets for both x(λ) and r(λ).  Therefore we
may use eq.(5) to determine tristimulus values from mea-
sured RGB values as follows: precalculate the three
white-spot values E(λ )SW (λ )T R

ω∫ r(λ )dλ  and

E(λ )SW (λ )T X

ω∫ x(λ )dλ . Assemble these values into
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two diagonal matrices. Now calculate the sharpened RGB
values resulting from applying TR to the measured RGB
values for the image being scanned.  Finally, eq.(5) states
that the (non-sharpened) XYZ values result from com-
bining the white-spot diagonal matrices with the sharp-
ened RGB values and multiplying by the inverse of TX.

So far, we have determined XYZ values with respect
to the scanner illuminant, not with respect to the stan-
dard illuminant D65. In the next section we discuss how
this deficiency may be remedied.

4. Illumination Change

The most useful XYZ values that we could produce
would in fact be relative to the standard illuminant D65
rather than to the scanner illuminant.  Here we must con-
front the problem of color constancy, since we are shift-
ing illuminants.  We can make use of the simplest model
of color constancy, viz. eq.(2), to transform illuminants.
Call the scanner illuminant ES(λ). Then for sharpened
sensors eq.(2) implies that the following relation should
hold:

ES (λ )S
ω∫ (λ )T X x(λ )dλ

ES (λ )Swω∫ (λ )T X x(λ )dλ
=

D65 (λ )S
ω∫ (λ )T X x(λ )dλ

D65 (λ )Swω∫ (λ )T X x(λ )dλ
(16)

We know the denominators in the above equation,
and we have calculated the values of the numerator of
the left hand side from the previous analysis.  Therefore
we can calculate the values of the numerator of the right
hand side and, from the inverse of TX, the tristimulus
values XYZ relative to D65.

Combining eq.  (5) with eq. (16) we arrive at a single
matrix linking input RGB values with output XYZ val-
ues relative to illuminant D65. Let us denote the respec-
tive denominators on the left hand side and right hand
side of eq. (5) by the diagonal matrices ΛS

R  and ΛS
X .

The diagonal matrix ΛS
X  also appears as the denomina-

tor of the left hand side of eq. (16).  Denote the denomi-
nator of the right hand side of eq. (16) by Λ D

X .  Then we
can combine (5) and (16) into the following form:

X D = (T X )−1(Λ D
X / ΛS

R )T R RS , (17)

relating RGB values RS  measured by the scanner to XYZ
device-independent values X D  relative to illuminant
D65.

5. Simulation Results

We carried out sharpening of x(λ) as in Figure 1, and also
sharpened the Sony response curves r(λ) both inde-
pendently, using eq. (9), and relative to x#(λ), as in eq. (14),
for a number of values of α. The sharpened curves are
shown in Figure 2.  For large α, the curves r#(λ) go over to
the set r#proj(λ). In Figure 2 we show curves r#(λ) for α=1.0
to 5.0 in steps of 1.0. The long-wave (red) sensors are
displayed. For α=10.0, r#(λ) is very close to r#proj(λ).  For
very small  α, r#(λ) is a scaled multiple of r##(λ).

Figure 2. Relative sharpening, long wave sensor. Solid line:
sharpened XYZ curve; dashed line labeled ‘#’: sharpest RGB
sensor; line labeled ‘p’: projection of RGB sensors onto sharp-
ened SYZ curves; dotted lines: sharpened RGB sensors rela-
tive to sharpened XYZ curves for α from 1.0 to 5.0.

Figure 3. Scanner illuminant, reduced to 10nm samples by
moving averages.

To test how well eq. (17) performs in recovering
XYZ values from measured RGB values, we performed
a simulation using the 462 spectral reflectance functions
of Munsell chips as measured by Newhall et al.10 We
used measured values for the spectral power distribu-
tion of a fluorescent light for the scanner illuminant.
Values measured by a PhotoResearch PR650 Spectra-
colorimeter were reduced to values every 10nm by car-
rying out a moving average. The fluorescent light used
is shown in Figure 3. Table 1 shows the median CIE
L*a*b*∆E error values obtained by sharpening r(λ)using
eq. (14) over a range of α values. Two values are shown:
the first row of ∆E errors are for XYZ values relative to
the scanner illuminant; the second row of ∆E errors are
for XYZ values relative to standard illuminant D65.
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Table 1. Median CIELAB ∆E values relative to scanner
illuminant and relative to illuminant D65 for several val-
ues of α for 462 Munsell samples.

The value α=0 corresponds to r#(λ)=r##(λ), the sen-
sor set r(λ) sharpened independently.  This is the sharp-
est set that can be formed from r(λ).  The value α → ∞
(α=10.0 in the table) corresponds to r#(λ)=r#proj(λ), the
sensor set found by projecting onto the space of sharp-
ened XYZ curves x#(λ).

(a)

(b)
Figure 4. CIELAB errors for recovered XYZ values, relative to
standard illuminant D65.

As can be seen, the sharpened set r#proj(λ) produces
the best results (smallest ∆E ) relative to illuminant D65.
However, note that this may not be true in general for
any set of reflectance data. Figure 4 shows a histogram,
using r#(λ)=r#proj(λ), of the second type of ∆E  value.

Figure 5 shows the recovered XYZ values relative
to illuminant D65, compared to the correct XYZ values,
for the 462 Munsell test patches.  Here, XYZ triples are
projected into the chromaticity plane x=X/(X+Y+Z),y=Y/
(X+Y+Z).  The area inside the spectrum locus delineates
the convex hull of actual  xy-values for the Munsell
patches. Error bars are shown extending from correct
values to those recovered by the algorithm presented
here.

Figure 5. Chromaticities, relative to D65: Spectrum locus, plus
correct chromaticities of Munsell patches; error bars to
chromaticities of recovered XYZ values.

The ∆E values in Table 1 above are smaller than, or
at most comparable to, values reported by Roetling11  and
Hung.6  They report average ∆E  values in the range 5 to
10 when input samples differing from the training set
are used. Here for the projected sensor set, the medians
of ∆E  values are 2.99 and 3.32, relative to the scanner
illuminant and relative to D65, respectively.  The mean
errors are 4.01 and  5.08 relative to the two illuminants.

6. 3-Pass Scanner

We have so far been assuming a 1-pass scanner that uses
one illuminant and three filters. Some scanners, how-
ever, are 3-pass, using three differently colored lights.
E.g., the Sharp JX450 scanner in Ref. 3 is 3-pass;  for
this scanner data is known in terms of illuminant SPD
times imaging system response including the mirror and
CCD†.

For a 3-pass scanner the analysis of §3 and §4 car-
ries through with the scanner illuminant ES(λ) set to unity
and all the response and illuminant SPD lumped into r(λ).
Figure 6(a) shows the three response functions r(λ) as
well as their independently sharpened versions r##(λ).
It can be seen that these are already quite sharp.

We found in §5 that in fact the best results were ob-
tained using r#proj(λ). Since here we must effectively
sharpen ES(λ)r(λ) we project onto the sharpened prod-
uct [(D65(λ )x(λ )# ], shown in Figure 6(b).

α 0.0 1.0 3.0 5.0 10.0

∆ES
6.02 2.91 3.01 3.00 2.99

∆ED
6.05 3.50 3.57 3.48 3.32
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(a)

(b)
Figure 6. (a) Response functions r(λ) for Sharp JX450 scan-
ner and sharpened versions r##(λ). (b) Sharpened [color match-
ing functions x(λ) times D65] and projection r#proj(λ) onto
them.

The results are quite comparable to those of §5 when
applied to the collection of Munsell patches.  For the
Sharp scanner we find that the mean ∆E value, relative
to illuminant D65, is 3.9, and the median value is  3.4.

7.  Conclusions

We have developed a very simple RGB→XYZ algorithm
based on spectral sharpening.   Adopting Wandell and
Farrell’s pithy phrase, we have transformed “water” into
“wine.”3 The results for tests performed are good.  One
might ask whether it might not be simpler to just project
the original sensors r(λ) onto the color-matching func-
tions x(λ), thus forming a set of (unsharpened) projected
sensors rproj(λ), as suggested in Ref. 11. For the same
conditions as in §5, we obtain quite large errors for this
alternate set of colorimetric sensors. Thus a scheme such
as we have proposed seems preferable. It is important to
realize that the present method does not remedy the prob-

lem of metamerism;  the sharpened sensors are still not
a linear transformation away from human eye sensors.
Nevertheless the method could guide one in designing a
set of sensors with sharpened versions closest to sharp-
ened XYZ curves.  Departures from scanner linearity are
another concern, but they are not corrected for here.

In general, since a large range of possible sensor
sets can be sharpened sensors could be chosen on the
basis of cost or convenience.  Sensors need not be nar-
row-band to begin with; broad sensors can still be sharp-
ened and are better, in fact, in terms of transmitting more
light to the optical system.

Because of the sharpening transform one could also
use more than three non-colorimetric filters that don’t
necessarily combine to an exact linear transformation
away from XYZ curves. On the other hand, the present
method does not lend itself well to dealing with fluores-
cent materials.

Finally, here we are dealing with only the first stage
in color transformation: colorimetric matching, not ap-
pearance matching.  However, the latter could be accom-
plished more accurately using sharpened filters.
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