
IS&T and SID’s 2nd Color Imaging Conference:  Color Science, Systems and Applications (1994)—111

Modeling Colour Refinement for
Progressive Image Coding

Anthony J. Maeder and Daniel M. Bell
School of Electrical and Electronic Systems Engineering
Queensland University of Technology, Brisbane, Australia

Abstract

Progressive compression schemes allow successive re-
finement of image contents during reconstruction. Here
an approach for modeling colour refinement of image
region interiors is presented. The model is based on
simple colour variations related to illumination, surface
shape and texture.

Introduction

Image compression schemes aim to represent image data
more compactly than specifying the individual pixel val-
ues, for efficient storage or transmission purposes. Many
different philosophical approaches to this challenging
problem have been explored, all of which attempt to
model higher level structure in the image data. Some
models exploit statistical redundancy and others
psychovisual redundancy1, 2. It has become widely ac-
cepted that conventional statistical modeling for com-
pression is far from optimal and so much attention has
been directed towards ‘second generation’ techniques3,
which attempt to encode information for large spatial
features or regions of the image separately.

Sometimes it is useful to represent an image using a
constructive sequence of data values providing increasingly
detailed information. This structure allows partial recon-
struction of the image, using comparatively little data, to
produce a simple version of the scene for early visual
recognition and subsequent further refinement. This ‘pro-
gressive compression’ capability can be useful in many
different image viewing situations, such as image data-
base queries, telebrowsing, teleconferencing, low band-
width channels, reduced resolution display devices.

Effective progressive modeling of image contents
can be derived from knowledge of human psychovisual
attributes.  In such an approach, dominant scene con-
tents over the whole image are extracted and encoded
first, giving a coarse resolution representation of the
image. These contents are associated with information
identified by our pre-attentive or early vision, such as
large relatively homogeneous regions, adjacent contrast-
ing areas and distinctive boundary shape properties.
More complex visual properties are encoded separately
to allow successive refinements of the reconstructed
image. These properties include subtleties of texture,

shading, colour, small regions and small boundary fea-
tures.

We have recently proposed a general progressive
compression technique4 which proceeds by first repre-
senting major regions approximately (e.g. as polygons
of constant interior) followed by refinements of both
region boundary and interior details (e.g. by triangular
boundary extension and runlength encoded interior im-
provement). The work described in this paper is related
to the choice of an early refinement strategy for the in-
terior variations, in particular for pixel colour. Various
refinements for the overall changes in colour that mimic
different stages of visual cognition of increasing atten-
tiveness are proposed.

Method

The influence of human perception of colour on our un-
derstanding of visual scenes has been widely studied,
along with many other psychovisual phenomena such as
brightness, textures, edges. Of these, colour has been
hardest to model in general terms and consequently
colour approximation techniques tend to be based on
clustering or colour space subdivision approaches (e.g.
Heckbert’s method5). An alternative approach has been
to model the physical world characteristics giving rise
to the scene, with potentially vast computational expense
(e.g. ray tracing).

The first stage in the image representation consists
of choosing a set of prescribed colours for the coarsest
progressive image version. Fast discrimination of colours
occurs best when well-separated hues are used, particu-
larly if the hues are primary or secondary in nature6, 7.
Adapting this rule of thumb to suit colour representa-
tion, the primary or secondary hue closest to the aver-
age hues of colours being represented for a region can
be used. Thus six prescribed hues were selected for use
in the initial representation.

Lightness has as influential an effect on colour dis-
crimination as hue, so a set of seven equidistant light-
ness levels was selected in an analogous way. Saturation
matters least, so only three saturation levels (0.0, 0.5
and 1.0) were selected. In addition, two values were
specified to represent pure white and pure black. All ini-
tial colours were therefore able to be represented using
exactly 7 bits in this scheme. Fewer prescribed colours
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scene with simple illumination and a restricted range of
hues, but with subtle variations in flesh tones. Peppers
is a contrived still life scene containing several widely
differing hues and many strong artifacts of lighting and
surface curvature. Neither scene contains significant re-
gions of strong texture content.

A simple colour segmentation was performed on
each image using a region merging scheme developed
for natural scenes8. The merging thresholds were adjusted
to produce roughly the same number of regions for both
test images. A second segmentation was then performed
to produce roughly double that number of regions for
both images. These segmentations provided basic re-
gional descriptions of the image contents for use as the
first level of spatial refinement in progressive compres-
sion of the image. Next, the multistage progressive colour
selection process described above was applied. The ini-
tial (stage 1), average (stage 2) and interpolated (stage
3) image versions were computed and displayed for vi-
sual appraisal. No spatial progressive refinement was
performed on these images, so as to confine visual as-
sessment of the quality to colour aspects only.

Difference images with respect to the original im-
age were computed for each of the three stages. Signal-
to-noise ratios (SNR) in decibels for the difference
images were calculated using the standard deviation val-
ues for the three HLS colour bands in each difference
image, compared with those for the corresponding band
in the original image. Approximate colour compression
rates (CCR) in bits per pixel that were achieved by each
stage were calculated from the number of values used to
specify the region colouring and to define correspond-
ing new colour table entries where necessary. The com-
pression rates for complete representation of regions
require region boundary specifications, which depend on
the current level of spatial refinement and so should be
considered separately from the region colours.

These quantitative assessments are not a good re-
flection of the visual quality of the reconstructed image
versions, but provide a basis for limited objective com-
parison. As can be seen in Table 1, the increase in the
number of regions led to a slight improvement in the
SNR in both cases. The major improvement in SNR was
obtained in converting the colours of stage 1 to those of
stage 2, and a lesser improvement was obtained from
stage 2 to stage 3. The relative rates of change of SNR
and CCR indicate that the colour accuracy obtained by
introducing more colours using interpolation is more
expensive in terms of error per unit compression obtained
as using the average colour values.

The effectiveness of this approach should really be
judged by controlled human observers in a real-time re-
construction of the image data (e.g. over several frames
of a video sequence), since that is the purpose for which
it is intended. Both qualitative and quantitative indica-
tors for this form of colour assessment are poorly devel-
oped however.  In addition, the region boundaries would
be undergoing corresponding refinements in accuracy at
the same time as the colour improvement in a real appli-
cation, which would further complicate human cogni-
tion of the changes.

could have been adopted, at a cost of less flexibility in
modeling those parts of scenes where colours were com-
paratively close.

For the second stage of representation, the regions
were approximated by more accurate versions of the
colours, obtained by computing the average hue, light-
ness and saturation for each region and specifying these
values accurately. At most this would require as many
new colours to be added to the colour table as the num-
ber of distinct regions to be represented in the coarsest
version of the image. The regions appear more realistic
in colour but uniform in appearance at this stage.

The third stage needs to represent the dominant
changes in colours which model the non-uniformity in
colour within each region. These changes are caused by
illumination and by surface curvature, prompting shad-
ows and highlights. Under many typical conditions, the
changes are fairly smooth and so can be modeled well
by low order polynomials. Linear interpolation is un-
suitable when the light source is not diffuse and when
object surfaces are not flat.  A quadratic interpolant was
therefore used to adapt the lightness and saturation val-
ues independently within each region. The hue values
could have been interpolated similarly, but in the results
presented here were left fixed at the average value, since
the region segmentation had been performed with a pref-
erence for hue similarity.

The next stages of colour refinement would involve
more detailed correction of the approximating colours
through each region. This could be achieved by decom-
posing the regions into disjoint sub-regions within which
colour variations could be modeled more accurately
piecewise using the technique described above. It could
also be achieved by incorporating corrections at
neighbourhood and pixel resolution to the colours used.

Some structure or ordering may need to be imposed
on which of the above types of corrections would be un-
dertaken first, but this decision is not crucial as the major
information of visual importance would already be present.
Appreciation of further detail by the viewer at this stage
would require strongly directed observation. Higher or-
der models of region colour variations could also be con-
sidered to permit representation of texture, for which
cognition is also strongly dependent on attentive vision.

The process described above necessitates the for-
mation of a sequence of nested colour subsets of the rep-
resentation colour space, to allow easy selection of the
colours at successive stages of reconstruction. The sub-
sets at each stage after the first can be derived from those
of the previous stage and the appropriate modeling pa-
rameters for the types of changes represented by the next
stage. This is a departure from the conventional approach
to subsetting, where a bottom-up merging or similar pro-
cess is applied to the full range of actual colours, a very
expensive process computationally.

Results

Computational experiments were performed using two
standard test images, Lenna and Peppers, each 256×256
pixels of 24 bit colour. Lenna is a head-and-shoulders
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Conclusion

The approach proposed here for progressive compres-
sion of colour in images is based on relating scene con-
tents to simple aspects of increasingly attentive human
vision. This contrasts with previous approaches to com-
putational colour approximation, which tend to follow
statistical or physical world modeling. The effectiveness
of the approach must be established visually at this stage.
Conventional quantitative measures indicate that the
approach achieves the goal of progressive refinement in
the test cases considered.

The opportunity exists to vary the models used at
each stage in the process, and to subdivide stages into
graded substages of partial refinement, based on prop-
erties of both colour and overall image reconstruction.
The low order model of colour change adopted for ease
of computation has already proven useful in other areas
of colour approximation, suggesting that it is a reason-
able choice. Higher order models or a general non-lin-
ear model based on colour importance9 during cognition
could be used to achieve more rapid convergence if the
application warranted such computational expense.

This work was supported by the Australian Research
Council and the Australian Space Office through the
Space Industry Development Centre programme.
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Image Regions Stage SNR (H) SNR (L) SNR (S) CCR (est)

Lenna 43 3
2
1

21.4
21.4
18.4

9.19
8.28
7.64

5.43
5.17
2.52

0.0072
0.0033
0.0006

Lenna 74 3
2
1

22.1
22.1
18.7

10.1
9.35
8.33

5.92
5.77
2.51

0.0124
0.0056
0.0011

Peppers 47 3
2
1

13.7
13.7
13.1

8.34
7.26
6.68

6.34
5.41
3.22

0.0079
0.0036
0.0007

Peppers 77 3
2
1

14.3
14.3
13.3

9.87
8.85
7.95

7.10
6.05
3.51

0.0129
0.0059
0.0012

Table 1.  SNR and CCR results for test images


