A Dataflow Environment for
Real-Time Image Processing Applications

Terence Arden and Joseph Poon
Logical Vision Ltd., Vancouver, B.C., Canada

Abstract

A dataflow environment based on a client/server ap-
proach, called WiT, enables dataflow graphs to be ex-
ecuted efficiently with little overhead. Data tokens are
managed by reference and reside on servers until either
data is requested for viewing or required by another
server. An enhanced fire-on-any behaviour greatly sim-
plifies the design of many simple graph constucts such
as multiplexors or crossbars which are overly compli-
cated when implemented with classical dataflow
contraints. Sync tokens are used to accommodate the need
for synchronizing data, especially useful when control-
ling hardware. A hierarchical scheduler maintains ex-
ecution sequence in a logical progression across multiple
sub-graphs to provide a server an opportunity to gener-
ate well structured standalone code suitable for real-time
target hosts. An example of WiT using hundreds of nodes
and links to model Datacube devices for a realistic ap-
plication is presented. The use of hierarchical operators
serves to reduce such a complex application to a man-
ageable level.

Introduction

The design and construction of real-time image process-
ing applications can be a time-consuming and costly pro-
cess. Ideally, software tools should support the
development of algorithms on a variety of platforms at
relatively low cost and allow for the migration to higher
performance hardware when needed.

WiT is a visual dataflow programming environment
for image processing algorithm development. Its CAD-
like environment offers considerable leverage over C-
based programming and text-based libraries. The client/
server structure of WiT allows the user to migrate to
higher performance hardware without changes to the
conceptual design represented in a dataflow graph.
Dataflow graphs in WiT can employ conditional flow
controls, looping, sequencing through a list of data ob-
jects, unlimited arc branching, and unrestricted flow di-
rection. Data anywhere on the graph can be inspected
without structural modification to the graph. There are
other visual programming packages available!-2:3:4.5.6,
some are commercial products and others are research
projects. A comparison between WiT and these pack-
ages have been described elsewhere’. WitFlow, a subset
of WiT, contains a server for Datacube’s ImageFlow and

allows the development of applications on Datacube’s
MaxVideo 200 pipeline image processor. Models for the
MaxVideo 200 and Digicolor are currently included. Pro-
grammers can design pipeline processing tasks with a
mouse and create ImageFlow code that runs without per-
formance penalty.

In this paper, we briefly review the advantages and
drawbacks of the dataflow concept in general, then we
discuss the enhancements that WiT made to classical
dataflow which enables it to model and control hard-
ware processes, with emphasis on execution efficiency,
scheduling behaviour, and synchronization. Finally, an
example of WiT using hundreds of nodes and links to
model Datacube devices for a realistic application is pre-
sented.

Review of the Dataflow Concept

Dataflow has a number of advantages over common con-
trol flow (procedural) languages such as C or FORTRAN.
It is visual and intuitive, which lends itself well to graphi-
cal, visual programming. It is inherently parallel in its
description of algorithms, which makes it suitable for
programming parallel computational systems.

Unfortunately, the dataflow paradigm suffers from
a number of significant drawbacks which has prevented
its widespread acceptance. The main weaknesses of
dataflow systems are related to speed of execution, node
scheduling semantics, and data synchronization. The
success of delivering on the promise of using dataflow
for rapid design and execution flexibility relies greatly
on how dataflow systems are implemented.

In the classical dataflow paradigm, data tokens flow
along arcs into computation elements (nodes), which may
accept any number of input tokens and produce any num-
ber of output tokens. Copies of the same token can be
sent to multiple nodes. A node is ready to fire when all its
inputs are available. After firing, all the inputs are con-
sumed and all the outputs are sent. Figure 1 shows an
example of a dataflow implementation of the equation

x_—b—\s’bz—4><a><c
2Xa

Execution Efficiency

The most serious drawback in dataflow is execution ef-
ficiency, since there is considerable data movement as

IS&T and SID’s 2nd Color Imaging Conference: Color Science, Systems and Applications (1994)—103

indicated by the number of arcs in a graph. For example,
there are 16 arcs in Figure 1. If token travel on each arc
is implemented by actual physical transfer of data, then
the overhead can be prohibitive.

The number of physically available processing ele-
ments is typically much less than the number of nodes
in a dataflow graph (e.g. even the simple graph in Fig-
ure 1 has 15 nodes). This means that there must be some
form of scheduler or arbitrator which can decide which
processing element will be assigned to an operation
(node). Unless the scheduler is efficient, it may cause
unbalanced work distribution among the processing ele-
ments, causing them to sit idle unnecessarily, or the
scheduler itself may become the bottleneck of the entire
computation system. Unless great care is taken to en-
sure execution efficiency, overhead costs make dataflow
suitable only for coarse grain parallelism.

Figure 1. Dataflow graph example

Firing Requirement

The requirement that a node must have all its inputs be-
fore it can fire and to produce all outputs when it is fin-
ished ensures correct firing sequence. However, this
requirement can sometimes cause unnecessary difficul-
ties in realizing simple applications. Consider an example
of a resettable counter shown in Figure 2. The T and F
operators are necessary to satisfy the requirement that
counter can only fire if all its inputs are available, al-
though sometimes we want the counter to count, while
other times we want it to reset. Figure 2 may seem like
an elegant solution, but consider the behaviour of the
box outlined in the dashed line. We can consider the
dashed line box to be a new operator which encapsu-
lates the behaviour of the sub-graph inside it. Then to
the outside world, the dashed operator behaves as though
it can fire even when only one input is available. In other
words, the complexity caused by introducing the 7 and
F operators is unnecessary if an operator can be option-
ally defined such that they can fire when any of its in-
puts is available.

§ reset

Counter o

count

Figure 2. Classical dataflow implementation of a reset-table
counter

The scenario illustrated in Figure 2 is much more
commonplace than one might initially think. As an anal-
ogy to functions or subroutines in procedural languages,
it is common for a visual programming environment to
allow the user to group a collection of operators together
and make it into a new operator. Since the graph repre-
sented by the new, hierarchical operator can start pro-
cessing when any of its inputs is ready, it is only logical
that the operator that encapsulates the graph can fire if
any of its inputs is ready also.

Synchronizing With Variable
Number of Inputs

Suppose we wish to use a dataflow language to control
hardware. We want to set some of the registers in the
hardware to some particular values, and activate the hard-
ware when that is done. This may be represented as in
Figure 3.

register

activate

ey
>

register #1

N

register #2

Figure 3. Synchronizing hardware control

As the activate operator will only fire when all its
inputs are available, we are guaranteed that the hard-
ware will only be enabled when all the registers are prop-
erly programmed. However, activate must have as many
input ports as the number of registers which we want to
program. In situations where there are a huge number of
registers that need to be programmed, or when some reg-
isters can be left at default values so that the total num-
ber of inputs to activate is variable, classical dataflow
becomes inadequate.

Enhanced Dataflow in WiT

In order to overcome the limitations imposed by tradi-
tional dataflow systems, WiT employs an enhanced
dataflow scheme which allows it to tackle real-time ap-
plications without compromising the advantages of
dataflow.

A client/server approach is used to model the sepa-
ration between how graphs are designed from the way
in which operations are carried out. The client imple-
ments the design layer through a CAD-like interface
(GUI) where graphs are interactively created to form
algorithms and automatically scheduled to run. Serv-
ers, on the other hand, run as separate processes to per-
form the computations in a graph by communicating with
the GUI using a suitable inter-process communication
method. WiT supports both TCP/IP and DDE protocols.

104—IS&T and SID'’s 2nd Color Imaging Conference: Color Science, Systems and Applications (1994)

The servers can be run in parallel across numerous ma-
chines which exploit special hardware devices or sim-
ply perform everything in software.

The division of work in a client/server scheme of-
fers two advantages. First, the algorithm designer is given
the freedom to rapidly express how problems are solved
regardless of how underlying computation is actually
performed. Second, the mapping of graphs to an appro-
priate technology allows many possibly different execu-
tion platforms (e.g. software or real-time hardware)
without forcing changes to the conceptual represented
in a graph. This gives the developer a path to migrate
slow software-based graphs to high performance hard-
ware without significant re-engineering.

Execution Efficiency

Token travel in WiT is achieved by simple manipu-
lation of a handle to the data object, not the actual data
itself. This reduces the overhead associated with data
movement to a negligible amount. When multiple serv-
ers are available, actual data transfer has to take place.
The GUI component still handles each data object by its
handle, but the actual data itself may reside on any of
the servers, or the GUI itself. The GUI keeps track of
which server or servers has a copy of the actual data,
and the GUI scheduler will schedule operations so that
data transfer is minimized. This will be discussed in more
detail in Section 4.

Simple operations such as adding two numbers or
concatenating strings are handled by built-in operators
which always run on the GUI, thus reducing the over-
head of fine-grain operations. Although profuse use of
such small operations should be avoided since there is
still significant overhead compared to compiled code,
occasional use of such operators can greatly reduce the
number of special operators required and improve read-
ability and ease of maintenance of algorithms.

Firing Requirement

WiT supports both fire-on-all and fire-on-any op-
erators. Special treatment is given to hierarchical opera-
tors, see Section 4 for details. In addition, operators can
control whether all, some, or none of their outputs are to
be produced. Outputs may or may not be connected in a
graph.

Synchronizing With Variable Number of Inputs

A special token type, sync, is introduced in WiT to
simplify the handling of synchronization requirements.
Normally, with regular data tokens, if multiple links are
joined in a junction, each token that arrives from any of
the incoming links is transferred to the outgoing link.
For example, if there are N input links to a junction and
one output link from it, then N tokens will be sent to the
output link. However, if the token traveling on a link is a
sync token, the link junction behaves differently. When
a sync token arrives at a junction, instead of being trans-
ferred immediately to the output link, the junction waits
till a sync token arrives from each of the input links be-
fore sending a single sync token to the output link. Be-
cause there is no limit to the number of links connected

to a junction, the sync token can be used to ensure proper
execution synchronization even when the number of in-
puts to an operator is variable.

register

register #1

register #2

syncActivate

Figure 4. Synchronizing hardware control with sync tokens

To illustrate, if we consider the situation in Figure 3
again, we can replace it with the graph shown in Figure
4, where each operator which programs a register pro-
duces a sync token. Now we can change the number of
registers we wish to program without changing the num-
ber of input ports of syncActivate.

Scheduling Considerations

The scheduler plays a vital role in WiT, since scheduler
efficiency has a direct impact on overall execution speed.
Also, it provides a hierarchical mode which is useful
when generating program code on a server.

Data Transport

Token data generally are not transported between
the UI and servers or among the servers themselves un-
less it is necessary. Often an entire algorithm, including
input/output operations, can be executed on a single
server without any data transfer at all. Data transfer is
necessary when the object needs to be displayed, or when
the server that has data does not support a required op-
eration.

When multiple servers are involved, the WiT sched-
uler maintains information about where each data ob-
ject resides. When an operator needs to be scheduled,
the scheduler assigns it to the available (not busy) server
which requires the least amount of data transfer.

When an arc branches into parallel branches, copies
of the token data will be physically copied to multiple
servers. But after this initial copying, the servers will be
able to execute in parallel.

Server Specific Operators

Servers in WiT can support different sets of opera-
tors. For example, it is possible to have a general pur-
pose server (call it server A) which supports all operators,
and another (server B) which utilizes special hardware
for filtering operators only. So there are some operators
that run only on server A, some that run only on server
B, and some that can run on either. The WiT scheduler
maintains all this information and schedules an operator

IS&T and SID’s 2nd Color Imaging Conference: Color Science, Systems and Applications (1994)—105

only on a server which supports it. When an operator is
supported by multiple servers, the server name that
appears first in the definition of the operator is given
priority.

Flat and Hierarchical Scheduling

When scheduling hierarchical operators, WiT pro-
vides a choice of flat or hierarchical scheduling. With
flat scheduling, the hierarchical operator behaves as if it
is a graph. When inputs arrive at its inputs, they will be
sent directly to the underlying operators within the hier-
archical graph. When any output token is ready, they are
sent immediately downstream. This allows the scheduler
to maximize parallel execution, which in turn should
result in faster overall speed.

With hierarchical scheduling, the hierarchical op-
erator behaves like a fire-on-any primitive operator (one
that is implemented directly in C). The WiT scheduler
finishes all schedulable operators within a graph level
before descending into a hierarchical graph. The effect
is that input tokens tend to collect at the inputs ports of
the hierarchical operator. Similarly, the WiT scheduler
only leaves a hierarchical graph when all schedulable
operators are scheduled. The effect is that output tokens
tend to collect at the output ports of the hierarchical op-
erator before they are sent downstream. Hierarchical
scheduling is useful for producing better structured pro-
gram code where code fragments correspond to the op-
erations within each hierarchical node. Flat scheduling
tends to create ‘spaghetti’ code as nodes from unrelated
parts of a graph can fire in an interleaved fashion.

A Real-Time Application

A special server called WitFlow was developed to man-
age simultaneous pipeline execution of dataflow graphs
on Digicolor and MV-200 hardware from Datacube®.
WitFlow presents each hardware device as a set of hier-
archically nested graphs which offer a high-level inter-
face to programming a massive set of low-level registers.
Each node in a WitFlow graph represents a basic build-
ing block used in defining an imaging pipe. There are
multiplexors and crossbars for controlling dynamic data
pathways and convolvers and lookup tables to provide
image processing primitives. Several models, say a
Digicolor and MV-200, may be connected in a graph to
pass real-time RGB channels from one board to the next.
The results of hardware pipes can be uploaded into
WitFlow for continued processing by the host CPU to
finish an application. For example, other servers may be
exploited to interface with programmable logic or robot
controllers.

As an example of a real-time application pro-
grammed with WitFlow, consider the problem of track-
ing a sailboat as it moves over a lake (Figure 5). The
field of view may contain clouds, trees, and small houses
at the lakeside. We wish to track the boat using real-
time hardware, Digicolor and MV-200, for color acqui-
sition and area parameter computation. The result will
be a simple graphic used for overlay on periodic video
frames to mark the sailboat position.

Figure 5. A sailboat image

T

eI Hl

P B

PP

Figure 6. Acquisition graph for real-time tracking of sailboat

This problem is readily solved by instantiating a
Digicolor and MV-200 model, represented as hierarchi-
cal icons, in the WitFlow workspace. The icons are con-
nected by links to feed live RGB data into the MV-200
from the Digicolor (Figure 6). The MV-200 routes the
incoming signals through a crossbar switch into three
image memories. The same signals are transmitted, in
parallel, from the memories through a LUT to a network
of ALUs which apply the distance function
d= \/(r— rt)2 +(g— gt)2 +(b- bt)2 . The d term is com-
pared to an acceptable threshold representative of a
sphere of allowable color vectors. The rt, gt, and bt terms
represent the RGB threshold, i.e. the center of a sphere
with radius d. The subtraction and squaring operations
are performed by a LUT in each of the memory devices.
The addition and final square root is implemented with
an ALU network and 12-bit LUT. The entire equation
requires a single pipe. This threshold method is used
twice to isolate bright white and dark reddish objects
corresponding to the sail and hull colors of the sailboat.
As aresult, two 8-bit binary images are generated which
are used as the input to a 3-stage blob parameter pipe.
The blob pipe produces a bounding box and pixel area
measurement for each region in the binary images. The
measurement or feature vectors are uploaded to WitFlow
from the hardware and used to select a pair of related
blobs from both color thresholds which satisfy the defi-

106—IS&T and SID'’s 2nd Color Imaging Conference: Color Science, Systems and Applications (1994)

nition of a sailboat, e.g. triangular white sail above wide,
narrow reddish hull.

The process is completed by displaying a symbol
on an uploaded snapshot from the live video feed. This
cycle is repeated continuously where the effective match

frequency is t=5x512x485x Pi +T,, where 5 pipes

are required to operate on a 512 X 485 image at a rate
denoted by P,, the pipe rate the case of the MV-200, P,
is 20 Mhz. T, is the time the host CPU consumes in cy-
cling through a feature vector searching for a sailboat
match.

Acknowledgements

Partial funding for this work was provided by the Na-
tional Research Council of Canada.

References

1. AVS Technical Overview, Advanced Visual Systems Inc.,
300 Fifth Ave., Waltham, MA 02154, 5.0 edition, 1992.

2.IRIS Explorer User’s Guide, Silicon Graphics Inc., 1.0
edition, 1991.

3. A Visual Programming Language for Visualization of Sci
entific Data, PhD thesis, University of Illinois at Urbana-
Champaign, Department of Computer Science, July 1992.

4. Neil Hunt, “Graphical Programming Techniques for Im-
age Processing on Single and Multiple Processor RISC
Systems,” Proc. of Electronic Imaging West, Mar. 1992.

5. Knowledge-Based Vision Systems: Visual Programming
Environment, Amerinex Artificial Intelligence, Inc., 409
Main St., Amherst, MA 01002, 3.0 edition, 1993.

6.J. Rasure and C. S. Williams, “An integrated dataflow lan-
guage and software development environment,” Journal
of Visual Languages and Computing, 2, 1991.

7. M. S. Atkins, T. Zuk and B. Johnston, “Role of Visual Lan-
guages in Developing Image Analysis Algorithms,” School
of Computing, Simon Fraser Univ., Burnaby, B.C., Canada.

8. Datacube Image Processing Manual, Document No. SM101,
Datacube Inc., Dec. 1991.

IS&T and SID’s 2nd Color Imaging Conference: Color Science, Systems and Applications (1994)—107

