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Abstract

A  method for constructing a multidimensional color
space transformation look up table (LUT) is presented.
The values associated with each node of the LUT are
calculated by a weighted sum of known values.  Unlike
the tetrahedral inversion techniques, this method does
not require the tessellation of the space.  Changing the
weighting function can produce LUT’s with different
properties, and the method has the ability to extrapolate
values beyond the gamut of the device.

Introduction

Color displays and printers have moved into the offices
and onto the desktops, and with this move come an as-
sortment of customer expectations.  At first customers
were happy to simply produce color, but now they want
to produce color easily, accurately and with pleasing ef-
fects and no surprises.  Vendors are trying to meet these
demands with the use of device independent color.  If
device independent color is to succeed, then the assort-
ment of scanners, displays, printers, and applications all
involved in the production of color documents  will all
have to understand the same device independent lan-
guage.  Furthermore, for each device or application to
be used to its fullest potential,  it will often be necessary
to accurately translate either to or from this device inde-
pendent language to a device dependent language.

The transformation between a device dependent
color space and a device independent color space requires
the calibration and characterization of a device, and then
the determination of an appropriate algorithm for doing
the transformation.  It has become common to perform
some part or all of this transformation by the use of a
multidimensional look up table, or LUT.  This is espe-
cially true for very nonlinear devices such as printers.1-

2  The creation of these LUT’s is a nontrivial task, and
has been discussed in the literature.3-5  The technique
described below is one method of building these color
transformation LUT’s.

Statement of the Problem

Consider the case of building a LUT to convert from a
device independent space, say a colorimetric  red-green-
blue space (RGBC), to a device dependent space, say a
printer cyan-magenta-yellow space (CMYX).   The first

stage of this process requires the calibration of the
printer, which will bring the printer to a known state of
operation.  Assume that this known state of operation
results in a printer which has a response, and that there
is a sufficient UCR/GCR strategy in place if this is a
four color printer.

The next step of the process involves characterizing
the device.  This may be done by sending a set of known
signals to the printer, i.e. device dependent data, and then
measuring the resulting colors, i.e. device independent
data.  The combination of these two data sets gives a
characterization of the device in terms of a mapping from
device dependent data to device independent data for
some sampling of the device’s native color space.  The
problem now is to use this sampling of the device char-
acterization to create an inverse mapping, i.e., from de-
vice independent data to device dependent data.

The device dependent data can usually be arranged
to lie on a known regular grid in 3-space, and is thus
amenable to any of several different interpolation
schemes.  For speed of computation in using the LUT it
is often desirable to have the device independent data
calculated for a regular grid in 3-space.  Unfortunately,
the colorimetric data will most likely lie in a rather scat-
tered fashion throughout the RGBC space, and will be
located only within the gamut of the device.  Values for
every node in the LUT, which form a regular grid and
spans the entire RGBC space, must be calculated from a
sampling of data which is scattered in the space and does
not fill the space.

Discussion of the Solution

For the one dimensional problem there exist a multitude
of ways to interpolate a regular set of data from an ir-
regular set of data.  Many of these methods do not have
extensions to more than one dimension.  One method
which can be extended into multidimensional spaces is
Shepard’s Interpolation.6-8  The method used here is a
modification which interpolates the change in a func-
tion, rather than the function itself.9,10 This method will
be described here in terms of a two dimensional example,
but it is readily extended to higher order dimensions.

Figure 1 is a plot of the data used in the character-
ization of a two color printer (Red and Green) printer.
For simplicity, the Cyan and Magenta coordinates, (CX,
MX), have been plotted as their color complements
(RX=1-CX and GX=1-MX).  If we assume the printer units
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are the same as the colorimetric units, we can scale both
sets of data (i.e. the device dependent and device inde-
pendent colorimetric data) and plot them together.  In
Fig. 1, colorimetric data are denoted by solid squares;
device data are denoted by ends of the arrow heads; and
the vectors are  pointing from the colorimetric coordi-
nates of a color sample, (RC, GC), to the printer coordi-
nates used to make that  same sample, (RX, GX).  Notice
that the device data lie on a rectangular 4x4 grid, while
the resulting colorimetric data are scattered irregularly
in 2D space.

Figure 1. Vector field mapping colorimetric colors to printer
colors.  Solid squares are colorimetric data, arrow heads point
to device data.

If the data were plotted for device dependent CMYX
coordinates instead of device dependent RGBX coordi-
nates, then for many colors, the vectors would be domi-
nated by the transformation from an additive RGB space
to a subtractive CMY space and small color changes may
be lost.  The use of  this modification of Shepard’s inter-
polation to build the LUT is most suitable when there
are only small vector changes in the transformation.

The task is to find a function (or in this case a LUT)
which will describe this vector field over the entire range
of possible input colorimetric data.  Note that while only
a two dimensional example is shown here with 16 vec-
tors, in practice it is not uncommon to have a three di-
mensional space with 1000 (=10x10x10) vectors.

For this example, consider using only the 4x4=16
vectors shown in Figure 1, to build an  8x8=64 element
table.  The table node points and the locations of the
known vector transformations are shown in Figure 2.
This table uses a nonlinear scaling of the axis so that
there is a finer sampling of the color space where there
is a high density of colorant.

Figure 2.  Vector field indicating desired mapping from colo-
rimetric colors to printer colors. Dotted lines indicate the lo-
cation of nodes in an 8x8 LUT.

A weighted average of all the sample vectors is used
to calculate the value for a node in the table.  Consider
the table node location (RC[i=6], GC[j=5]).  There is no
calibration data at that particular point, but there are some
vectors which are near this table location.  The vectors
near the point of interest should have a greater influence
than vectors far away, so a weighting function which is
inversely proportional to distance is used.  This can be
expressed in mathematical terms by calculating the
weighted average of each of the vector components, (ER,
EG), as:

ER=(∑(RX[k] - RC[k]) * W(d[k]) )   /  ∑(W(d[k]))
(1a)

EG=(∑(GX[k] - GC[k]) *  W(d[k]) ) /  ∑(W(d[k]))
(1b)

where [k] is the calibration patch index, and d is the dis-
tance from the patch (RC[k], GC[k]) to the lattice
node(RC[i], GC[j]), and W(d) has been chosen as the
weighting function whose value is inversely proportional
to the distance d. The summation is over some sets of
the k known values.  For node location (RC[i], GC[j])
and patch number [k]:

d[k]2=(RC [i] - RC [k])2+(GC[j] - GC[k])2 (2)

Finally, the device dependent values, (RX, GX), in-
serted into the table at this node are given by:

RX = RC+ER (3a)

GX = GC+EG (3b)

Notice that if the printer is perfect, so that RC=RX
and GC=GX, all the vectors are of length zero, and  ER =
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EG = 0.0.  The interpolation is being done such that the
interpolated values are calculated as a change to the in-
put values, and not simply a weighted average of the
known values.  This means that in regions far from any
known data values, you will get a mapping which is the
same as the average change imposed by the system, and
not a mapping which is the average of the known values.

Example

Some of the effects of using different  weighting func-
tion will be presented here using an even simpler one
dimensional example.  A one dimensional function that
has been sampled at 10 points over the range [0,255] is
plotted in Figure 3a.  In this one dimensional example,
it is easy to draw straight lines between the points, and
get a piece-wise linear approximation to the actual func-
tion.  In a multidimensional space it may not be so easy
to find such a tessellation of the space.  As plotted, this
function can be thought of as representing a mapping
from  colorimetric space to device space.  The ten known
values of the independent variable corresponds to re-
quested colorimetric values, and the dependent variable
corresponds to the needed device value.  The goal is find
the general mapping from colorimetric values to device
values, at locations other than the ten known values.

Figure 3b is a plot of the mapping functions obtained
when the weighting function is either 1/d, or 1/d4, and
all of the known points are used in the summation.  No-
tice that both of these functions are exact at the loca-
tions of the known values,  and are thus exact
interpolating functions.  This will be true of any weight-
ing function which has a pole at d=0.  Also notice that
the linear power of 1/d produces a severe scalloping ef-
fect in between the known data values, while the higher
order power of 1/d is much smoother.  The low order
power is seeing the effects of too many of the known
values, the weighting function does not fall off fast
enough.  The extrapolation properties can also be ob-
served for values less than zero and greater that 255.

The effects of limiting the number of values used in
the summation can be observed in Figure 3c and Figure
3d.  The mapping shown in Figure 3c is calculated using
a linear inverse power of distance, but limiting the sum-
mation to include only the nearest two or five neighbors.
In this case the use of only two neighbors produces an
almost piece wise linear fit, while the use of five neigh-
bors still suffers for some of the scalloping effects dis-
cussed above.  The mapping shown in Figure 3d is
calculated using a cubic inverse power of distance, but
limiting the summation to include only the nearest two
or five neighbors.  In this case, there is almost no differ-
ence between the use of two neighbors, or five neigh-
bors, the weighting function falls off rapidly enough so
that the effects of far away known values are negligible.
The weighting functions which are proportional to lower
powers of distance are more sensitive to the choice of
the number of values to use in the summation, than those
weighting functions which are proportional to higher
powers of distance.

The mappings obtained when using two weighting
functions which do not have poles at d=0 are shown in
Figure 3e and Figure 3f.  The weighting function used
to calculate the curves in Figure 3e is of the form exp(-
Ad), where the two curves are the result of two different
choices for A.  The weighting function used to calculate
the curves in Figure 3f is of the form exp(-Ad2), where
the two curves are the result of two different choices for
A.  With these choices of weighting functions, the inver-
sion is no longer guaranteed to be correct even at the
known data values.  This may be advantageous if it is
known that the given data is noisy, and exact interpola-
tion is not required.  In regions far from any known data
values, the inversion tends to produce a discontinuity.
This is most noticeable near the colorimetric value of
150.

In addition to these simple weighting functions and
limitations on the summation, several other options are
easily implemented.  It is possible to alter the weighting
function dependent upon what region of the function is
being approximated.  In the multidimensional case it is
also quite easy to have the summation and/or weighting
function have an angular dependence.  Perhaps sum over
the set of points with a similar hue, saturation, and
chroma.  The expanse of possibilities and variations
makes any optimization a very interesting task.

Figure 3a. Original Sample data (*), and line y=x.

Figure 3b. Effects of using inverse power weighting with all
sample points.
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Figure 3c. Effects of using inverse linear weighting, and only
some of the sample points

Figure 3d. Effects of using inverse cubic weighting, and only
some of the sample points.

Figure 3e. Effects of using exponential weighting with differ-
ent decay constants.

Figure 3f. Effects of using Gaussian weighting with different
standard deviations.

Conclusions

There are several advantages and disadvantages to this
method, as well as ways to control various properties of
the LUT by changing the weighting function and the val-
ues over which the summation is carried out.  The fact
that sample points do not have to be regularly spaced,
and that LUT node locations outside the gamut are auto-
matically extrapolated are two advantages to this method.
Two of the disadvantages are that the error vectors should
be relatively small, and it is difficult to control the bounds
of the calculated values.  This interpolation technique
offers enough flexibility for the user to investigate ways
to exploit the advantages and minimize the disadvantages
inherent in the method.
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