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Abstract

With the advent of vector-space approaches, linear esti-
mation techniques can be used in various ways for dif-
ferent imaging scenarios.  We compare two methods for
constructing linear models for surface reflectance spec-
tra, the Principal-Components Analysis (PCA) and the
One-Mode Analysis (OMA) 

1 applied in simulating im-
age capture under a number of realistic lighting condi-
tions.  We demonstrate that successfully using such
methods depends on the exact problem at hand.

Introduction

Color calibration methods involve prediction of device
and human sensor responses as well as establishing trans-
formations among them.  For 3-sensor input devices,
there are two cases in which the tristimulus values of
the scene colors can be accurately determined;  In the
first case, spectral reflectances occurring in the recorded
scene can be represented accurately by linear combina-
tions of three basis vectors. Unfortunately, the actual
number of basis vectors needed for natural scenes lies
in the range of five to seven2. In the second case, spec-
tral sampling functions of the recording device relate to
the XYZ color matching functions by a linear transfor-
mation (i.e., a 3×3 matrix)3.  However, efforts attempt-
ing to achieve the latter condition have failed, mainly
due to inability to manufacture color filters with the re-
quired sensitivities at affordable cost.

As a result, current image recording devices are sub-
ject to discrepancies between recorded RGB signals to
XYZ tristimulus values of the scene colors, a phenom-
enon known as eye-versus-camera (or scanner) metamer-
ism.  Metamerism is one of the most basic and startling
phenomena in color science, and stands for the lack of
isomorphism (i.e., one-to-one correspondence) between
a physical color stimulus to the evoked sensation (in case
of humans) or response (in case of devices)4.  Since im-
ages captured with current input devices are subject to a
loss of information present in the original, some sort of
estimation procedure is always necessary.

Generally, the illuminant under which the scene (or
original) is recorded is different from the illuminant used
for viewing the reproduced image.  For a scanner, the
device illuminant is fixed and can be measured and com-
bined directly with the spectral sampling functions of
the sensors.  For a camera, the scene illumination can
vary and need to be estimated either directly using spec-

trophotometric measurement or indirectly from the re-
corded image statistics.  However, the spectral power
distribution of scene illumination may not be fixed across
the image in real situations, either due to interreflections
from scene objects or because several types of
illuminants may be present.  In this paper, we will as-
sume a single illumination that is known and fixed across
the recorded image.

Linear models for representing surfaces, illuminants
and sensors have become popular in solving color sci-
ence problems.  The popularity stems from the fact that
human visual sensors as well as CCD sensors, commonly
used in scanners and video and digital cameras, respond
linearly to incident light spectra.  Also, mathematical
methods for dealing with linear models enable a rela-
tively simple formulation of color estimation algorithms.
In this paper, we apply such methods to predicting sen-
sor responses from a commercially-available digital cam-
era simulated under a number of different lights.  We
show that employing more knowledge about the imag-
ing scenario can result in improved accuracy.  However,
we also demonstrate that applying the same criteria in a
different context (i.e., RGB to XYZ color conversion)
can result in degraded accuracy and, in fact, straightfor-
ward empirical methods perform best.

Background

A substantial portion of the effort in using linear models
is focused on constructing efficient vector-space repre-
sentations for surface reflectances5.  This efficiency is
ordinarily quantified by computing the deviation of
sample spectra from its approximation by a set of basis
vectors.  Deriving the basis vectors is generally done by
performing a principal-component analysis (PCA) on
sample spectra, generally through usage of the singular-
value decomposition (SVD)6.

Basis vectors derived using PCA indeed provide an
efficient representation of the spectral content of surfaces.
However, the derivation is based solely on sample spectra
of surfaces and does not take into account other factors
involved in the image formation process.  These factors
include the effect of different scene illuminants on the dis-
tribution of incident color spectra observed by the capture
device, as well as the mass reduction of information per-
formed by the device sensors converting the incident
color spectra into three-dimensional RGB signals.

Basis vectors derived using OMA deal better with
the above factors by utilizing the filtering effects of the
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sensors’ sensitivities and the illuminants’ spectral con-
tent across the wavelength scale.  Hence, predicting sen-
sor responses using linear transformations based on OMA
is less subject to loss of information.  It should be noted,
however, that linear models derived by OMA will not
necessarily be optimal in representing the surface reflec-
tance spectra, although OMA can be used effectively to
predict sensors responses1.

Development

Representation of surface reflectance spectra using a fi-
nite-dimensional linear model is ordinarily expressed
using the following equation:

S(λ ) = wiBi (λ )
i=1

i=d

∑ (1)

where color spectra S(λ) is represented as a weighted
average of d basis vectors Bi(λ) with weights wi, or al-
ternatively using matrix algebra as:  S = BW  where the
basis vectors Bi(λ) are stored as columns of matrix B
and wi are stored as columns of matrix W.  For conve-
nience, the basis vectors can be orthonormalized using a
Modified Gram-Schmidt6, since any linear non-singular
transformation of the vectors spans the same subspace.
The main advantage is that the basis vectors become the
transpose of the sampling vectors instead of their pseudo-
inverse.

Mapping the original spectra onto the linear sub-
space is done using a projection matrix.  This is basi-
cally a filtering operation of the original spectra using
the sampling vectors followed by a span operation using
the basis vectors:

S’ = BW = B (BtS) = (BBt) S = PS  (2)

where P is the projection matrix and S’ is the approxi-
mated spectra.  Conventional methods for deriving a lin-
ear model for sample spectra, such as PCA, perform
minimization of the error in the spectral domain, usu-
ally via the SVD:

E = || S - PS || (3)

S = UDVt  (4)

where S contains the sample reflectance spectra in col-
umn vectors and D is a diagonal matrix with monotoni-
cally decreasing singular values.  The first d columns of
U are taken as orthonormal basis vectors for the linear
model, Bpca. However, for calibration purposes, we are
more interested in minimizing the error in the sensor
responses domain, using the OMA method, again done
via the SVD:

E = || TS - TPS || (5)

R = TS = UDVt (6)

where T contains all responsivity functions (sensors with
illuminant) of interest in the imaging scenario, includ-

ing a human observer with desired viewing illuminants.
We obtain the best least-squares approximation by fac-
toring R into:

(TB) (BtS) = (UdDd)(Vd
t) (7)

where Ud, Dd and Vd are U, D and V with dimensionality
reduced to d.  The linear model, Boma, is obtained by
solving the following expression for the sampling vec-
tors Bt:

Bt = Vd
t St (SSt)-1 (8)

Note that Bpca ≠ Boma since Bpca is based on factor-
ization of spectra and Boma is based on factorization of
sensor responses.

Experiment

The two methods, PCA and OMA, are used to derive
linear models for predicting sensor responses.  Also, we
use the derived linear models to construct RGB to XYZ
transformations.  In both experiments, errors are com-
puted between model-predicted (or transformed) values
to the known data.  We used a standard test target, the
Macbeth Color Checker7, with simulation of a commer-
cially-available Kodak DCS200 digital camera.  The sen-
sors sensitivities for an actual camera were taken from
estimations8 shown in Figure 1.
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Figure 1.  Spectral sensitivities of Kodak camera sensors

Recording images was simulated under three differ-
ent illuminants; fluorescent, tungsten and D6500 day-
light (Figure 2).  For computing human sensation errors,
we selected a 2-degree standard observer and a D50
viewing illuminant.

The first method, PCA, based on the sample reflec-
tance spectra only, derives the spectral functions (equa-
tions 3, 4) shown in Figure 3.
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Figure 2.  Spectral power distribution of scene illuminants
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Figure  3.   PCA-based spectral sampling functions
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Figure 4.  OMA-based spectral sampling functions (all lights)

The second method, OMA, is based on the sensor
responses which are computed by multiplying the sample
reflectance spectra by the sensors’ responsivities.  These
sensors include the Kodak camera under each of the three
light sources and the XYZD50 color matching functions.
The spectral functions derived (equations 5, 6, 7, 8) for
all the four sensors combined are shown in Figure 4.

Results

To compare the performance of the two methods, we cal-
culated the surfaces weights for all five linear models;
PCA, OMA for each light (FLU, TUN and D65), and
OMA for the three lights combined (ALL).  Then, we
computed the RMS errors for the best linear-regression
fit between surface weights and sensor responses (Table
1).  There are four sets of responses; device RGB under
each of the three lights (RFLU, RTUN and RD65), and
XYZ under the D50 light (XD50).  The reference RGB
and XYZ sensor responses were calculated directly from
the known surface reflectances of the test target and the
respective sensors responsivities.

Table 1.  RMSE of linear fit for predicting sensor responses

RFLU RTUN RD65 XD50
PCA       3.04  3.78     2.03 3.65
ALL  1.08 0.86 1.01 1.39
FLU 0.67  2.88 1.70  0.73
TUN 1.11 0.70     1.14 1.44
D65 1.32 2.10 1.02 0.92

In addition, we calculated 3×3 transformations be-
tween device RGB under each light and XYZ under D50
light for all five linear models (as above) using the fol-
lowing expression:

Tt
xyz B (Tt

rgb B)-1 (9)

where Tt
xyz is the sensors responsivities for XYZD50 and

Tt
rgb is the sensors responsivities for RGB under each

light.  Also, we calculated the empirical least-squares
3×3 transform between the 24 RGB values under each
light to the 24 XYZ values (EMP), and also the least-
squares 3×3 transform between the RGB sensors
responsivities under each light to the XYZD50 color
matching functions (CMF).  Then, we computed the RMS
errors for the RGB sensor responses under each of the
three lights (RFLU, RTUN and RD65) between the
reference XYZ values to the transformed XYZ values
(Table 2).

Discussion

Table 1 demonstrates that using knowledge of the sen-
sors in addition to knowledge of surface spectra is use-
ful at predicting responses from surface weights; all
OMA models perform better than the PCA model for all
four sensors.  As expected, the best fit for the RGB re-
sponses under each of the three lights, is always obtained
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with the linear model based on the same light.  Also, the
second-best fit for the RGB responses under each of the
three lights, is obtained for the linear model based on all
three lights combined.

Table 2, however, demonstrates that using the same
knowledge for transforming device RGB into XYZ val-
ues actually does worse than without it; the PCA model
performs better than all OMA models for all three RGB
sensors.  In fact, the PCA model is very close to the op-
timal empirical (EMP) transform.  Also, it is not even
true that the OMA models are always better than the CMF
method based on the sensors’ responsivities only.

Table 2.   RMSE of reference XYZ versus transformed XYZ

RFLU RTUN RD65
PCA 1.93 3.57 2.32  
ALL 4.81 12.20 6.07
FLU 6.81  21.61 10.81
TUN 4.78 10.70 6.51
D65 5.49 16.24 8.16
CMF 17.36 19.42 4.00
EMP 1.90 3.49 2.30

In summary, linear models for surface reflectance
spectra are useful for color calibration of input devices,
but only when used in the appropriate context.  Improved
accuracy can be achieved in these cases when spectral
characteristics of sensors and illuminants present in the
captured scene is taken into account.  Applications likely
to benefit from such approach include those using mul-
tiple scanners (different illuminants, different sensors)

as well as video and digital cameras (different illumi-
nants, same sensor).  Similar benefits can be realized
for rendering of spectral waveforms on color monitors
in computer graphics applications.
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