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Abstract

Color correction of images for a non-linear device
uses its characterization function, often evaluated by
rectilinear interpolation of a table of measurements.  Se-
quential linear interpolation (SLI) instead allows more
freely distributed grid points, but usually requires
remeasure-ment to place them optimally.  We smooth
the measured data with a tensor-product spline before
using a fast SLI look-up table: noise is reduced, and the
spline curvature reveals choice SLI grid locations with-
out remeasurement.

Introduction

Modeling the behavior of a non-linear device, like a color
printer, requires a mathematical function called the char-
acterization function of the device.4  This function maps
pixel values in the device input space to measured colo-
rimetric values; for example, printer CMY pixel values
to CIE XYZ measurements. Rendering images to appear
the same on different display devices requires gamut-
mapping,11 the association of gamut values for one de-
vice with gamut values for another.  A typical gamut-
mapping problem, such as printing an image from a CRT,
will require the characterization function of one device
to be composed with the inverse characterization func-
tion of the other: the RGB image from the CRT is con-
verted to XYZ space using the display characterization,6

and then converted from XYZ space to CMY values us-
ing the inverse printer characterization.

We are interested in characterizing devices from
measured data in such a way as to remove noise from
the measurements.  This process leaves us with a model
of the device that is smoothly-varying and well-behaved.
Unfortunately, no device model can ever be fast enough
for the demands of color correction on million-pixel
images, so as a final step we must approximate our model
with a look-up table and interpolation.  For these two
steps, smoothing and evaluation, we have chosen as tech-
niques tensor-product spline fitting10, 8, 7, 2 and sequen-
tial linear interpolation.1  The spline-fitting algorithm
works with data of any dimension, and uses adaptive
reparametrization and least-squares minimization to find
the best fit; sequential linear interpolation (SLI) uses a
small look-up table and flexible grid values to approxi-
mate the model accurately, at speeds comparable to rec-
tilinear interpolation.4  In this paper, we show how spline

parameters can be chosen to smooth noise in a perturbed
Neugebauer printer model, and we discuss methods of
SLI grid selection and the error in the SLI stage.

Device Characterization

The characterization techniques in this paper are useful
for any device that does not have a simple model. The
most obvious examples are printers, which deviate
enough from all proposed models that they must be char-
acterized by measured tables and approximation.11 Liq-
uid crystal displays are a less obvious example. Although
they produce color by the additive mixture of several
primaries, the primaries are not of constant chromatic-
ity,5 and so the model is not easily invertible. The strat-
egy outlined here, although aimed at the forward
characterization function, could be adapted to invert the
liquid crystal display model.  For simplicity, however,
we assume below that we are dealing with a CMY color
printer.

Characterization of a printer is non-trivial: the sub-
tractive combination of inks or dyes behaves non-lin-
early in tristimulus space.11  Although simple models like
the Neugebauer equation exist, in practice some modifi-
cation is needed to make them match a printer’s behav-
ior, and even then, the model may not be appropriate for
printers of a different technology.

Instead of using such a model, a more accurate
method is to print and measure many colors, thus sam-
pling the printer gamut, and use interpolation or approxi-
mation on the table of data.  This approach depends on
the printer gamut being continuous and moderately
smooth, a reasonable assumption for any printer of good
quality. With enough measurement, sampling and ap-
proximation can be very successful; the disadvantages
are the cost of measurement, and the presence of mea-
surement noise. The most popular approximation func-
tions are rectilinear or subtetrahedral interpolation,4 since
more complex models are too costly to evaluate in real
time for large images.  These two schemes usually re-
quire a dense rectangular lattice of samples, and, being
interpolatory, they incorporate measurement noise into
the approximation.

At the Computer Graphics Laboratory, we have de-
veloped a  tensor-product spline fitter to smooth noise
from characterization data, yielding a well-behaved
model for the printer.8  The spline fitter reduces any high-
dimensional problem to a series of one-dimensional fits,
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for which it iteratively adds knots and reparametrizes
until a least-squares minimum is found.10  Our experi-
ments with an ideal printer model, discussed below,
show how good spline parameters can be chosen for typi-
cal printer gamuts.  Still, despite the speed of the spline
model, a faster evaluation method is preferred for prac-
tical image correction.  Instead of choosing conventional
rectilinear interpolation, we use sequential linear inter-
polation,1 a general purpose interpolation scheme with
the potential for hardware implementation.  The diffi-
cult decision with SLI is choosing the best grid for the
domain samples: we discuss below alternatives derived
from the curvature of the spline model.  SLI allows us to
maintain a small irregular grid of points that represent
the gamut accurately, instead of the dense lattice required
by conventional interpolation.

Spline Fitting

The Computer Graphics Laboratory has a spline research
group that maintains a large library of C++ software.
Bartels and Sreckovic developed a tensor product spline
fitter for one-dimensional curves.10  Given a set of data
points, and parameters for degree and number of seg-
ments, this fitter iteratively reparametrizes and adds
knots to a B-spline curve until a good least-squares fit is
obtained.  Since tensor product splines are a multiplica-
tive generalization of one-dimensional splines,7, 2 it was
possible  to produce a surface fitter as well, which called
the curve fitter recursively. Hickey extended the fitter
to support data of any dimension.8 We are currently
studying the applications of this fitter to gamut-mapping
in high-dimensional reflectance spaces,3 although we will
deal only with three-dimensional color spaces in this
paper.

We sample the gamut of a printer by generating a
rectangular grid of points in CMY space, printing a color
patch for each point, and measuring the patches to ob-
tain tristimulus values XYZ.  The spline fitter produces
a model of the gamut by approximating this data, im-
plicitly smoothing out the noise.  The spline model may
be evaluated directly per image pixel (in color correc-
tion, for example), or  evaluated at many points to pro-
duce a look-up table for fast interpolation later.  We take
this latter approach, and use sequential linear interpola-
tion as our method.

The fitter operates entirely on numerical principles,
and because it has no embedded colorimetric concepts,
it will fit data in any space we choose.  Because it per-
forms least-squares minimization, however, one should
ensure that the Euclidean distance in the chosen space is
a sensible measure of color difference.  For this reason,
we fit our data in CIE LAB space, which may be consid-
ered perceptually uniform.12

Sequential Linear Interpolation

Sequential linear interpolation has been investigated by
Allebach et al., as a fast method of interpolating without
being restricted to a rectangular grid of domain samples.1
Recall that, for our printer characterization example, con-

ventional rectilinear interpolation would have us fix val-
ues of C, values of M, and values of Y beforehand, and
use their Cartesian product as the set of colors to print
and measure.  SLI allows a more tree-like structure: for
each of a set of C values, pick a set of M values; for
each CM combination, pick a set of Y values.  This fairly
general set of points in CMY space can be interpolated
almost as quickly as the Cartesian product above;1 the
challenge is to find grid points that best sample the do-
main. Allebach gives an iterative remeasurement algo-
rithm for his work with the inverse characterization
function, but we can use our spline model to avoid this
expense.

One obvious method is to examine the curvature of
the spline function, and choose grid points clustered
around regions of high curvature.  Most optimization
problems of this nature have fixed knot positions (grid
points); this allows a basis of piece-wise polynomial
functions to be constructed, and the optimal solution is
simply the projection of the target function onto this
basis.9  Our problem instead allows us to move the grid
points for the best solution.  Even simple problems of
this form do not have neat closed-form solutions.  The
practical approach is to reuse the spline fitter, with lin-
ear parameters, on the smoothed data.  The fitter is de-
signed to solve this kind of approximation problem
heuristically: it gives us a piece-wise linear function,
though on a rectangular grid, rather than the less regular
SLI grid we want. We are currently investigating differ-
ent algorithms for converting the spline knots and con-
trol vertices to the most representative SLI grid points.
The speed of the spline fitter gives this strategy great
potential.

Fitting Experiments

Spline Fitting without SLI
To evaluate the effectiveness of the spline fitter in

smoothing characterization data, we fitted 16×16×16 uni-
formly-spaced CMY samples of a simple Neugebauer
model having varying amounts of Gaussian noise in XYZ
space.  (As using the SLI look-up table can add further
noise, we omitted this step from the algorithm and evalu-
ated the spline directly.) Because of the need for small
∆E values, we converted our samples to LAB space12 to
make best use of the least-squares minimization in the
fitting.  The spline fitter accepts data in six columns:
CMY printer inputs, and LAB color sample measure-
ments.  A few parameters are also necessary for the fit-
ter, for each domain dimension: the degree of the curve,
and the number of curve segments.  We expected that
small numbers of curve segments would fail to describe
the data well enough, and large numbers of segments
would follow the noise too closely.

The simple Neugebauer model13 was used with XYZ
values of primary, secondary, black and white colors from
a DuPont 4Cast printer to give an ideal CMY to XYZ
model.  Gaussian noise was added in 0.5%, 2%, and 5%
quantities; the percentages are fractions of the range of
XYZ values for the whole gamut. It would be interest-
ing to consider noise specifications more typical of colo-
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rimeters, but our approach proved sufficient for this
simple experiment. The XYZ values were converted to
LAB and processed by the spline fitter, and the resulting
spline was then compared to the noise-free LAB values
from the Neugebauer model.

It is worth noting that the Neugebauer equation
amounts to trilinear interpolation of eight XYZ values.
From our spline-based point of view, this is a linear spline
with only one segment in each domain dimension, and,
if we choose to fit XYZ values, the fitter does model
this ideal data exactly.  Once noise is added, however,
fitting in XYZ space and converting to LAB gives less
accurate ∆E values than fitting directly in LAB space.

Table 1.  Error in spline fit to (Neugebauer model + 0.5%
noise × ∆XYZ)

Degree Segments Mean ∆E Max ∆E
1 1

2
3
4
5

6.15
2.13
1.19
0.81
0.77

33.21
20.05
12.80
 8.21
 6.35

2 1
2
3
4
5

1.49
0.69
0.56
0.58
0.64

16.11
 7.77
 3.73
 3.72
 4.30

3 1
2
3
4
5

0.63
0.54
0.57
0.64
0.73

 6.58
 3.02
 3.78
 4.18
 4.47

4 1
2
3
4
5

0.54
0.57
0.64
0.73
0.81

 3.02
 3.83
 3.96
 4.97
 6.30

In general, there is a decreasing-then-increasing
trend in both Mean ∆E and Max ∆E as we increment the
number of segments for each fixed degree.  This is as
expected, since for small numbers of segments we lose
detail, and for large numbers of segments we follow
noise.  Similarly, for low degrees we lose detail, and for
high degrees we follow noise.  Note that in Table 1, for
a degree 1 spline, we have a small Mean ∆E for 5 seg-
ments (it might have been even better for a larger num-
ber of segments), but that the approximation is better
for a degree 2 spline with 3 segments, and best of all,
according to this limited data set,  for degree 3, 2 seg-
ments or degree 4, 1 segment.

In Table 2, the best-fitting spline is degree 3, 1 seg-
ment; in Table 3,  it is degree 2,  1 segment.

The high Max ∆E values in Table 4 make any of the
spline fits unlikely to be usable in practice; however,
recall that the noise value is 5% of the difference in ex-
treme XYZ values for the gamut, quite a high number.
Any interpolation method using these noisy measure-
ments without smoothing the data would be even less
satisfactory.

Table 2.  Error in spline fit to (Neugebauer model +  2%
noise × ∆XYZ)

Degree Segments Mean ∆E Max ∆E
1 1

2
3
4
5

6.38
2.80
2.20
2.16
2.34

32.50
17.85
13.53
10.91
11.55

2 1
2
3
4
5

2.25
1.91
2.05
2.27
2.54

12.94
 9.33
 9.36
14.68
17.77

3 1
2
3
4
5

1.88
2.05
2.25
2.55
2.90

  9.34
10.16
15.57
17.27
19.18

4 1
2
3
4
5

2.04
2.25
2.55
2.90
3.24

11.23
15.44
17.10
20.68
26.23

Table 3.  Error in spline fit to (Neugebauer model +  5%
noise × ∆XYZ)

Degree Segments Mean ∆E Max ∆E
1 1

2
3
4
5

7.43
5.05
4.90
5.31
5.90

32.04
22.82
21.39
32.52
43.17

2 1
2
3
4
5

4.74
4.75
5.27
5.83
6.53

18.24
28.58
40.65
43.25
57.14

3 1
2
3
4
5

4.75
5.27
5.81
6.55
7.44

29.95
42.20
45.63
54.15
63.11

4 1
2
3
4
5

5.27
5.81
6.56
7.45
8.32

41.45
45.72
51.35
70.46
85.46

Spline Fitting with SLI
To observe the effect of adding the SLI stage to the

characterization process, we chose an 8×8×8 SLI grid
by hand, spaced so that the points would be roughly uni-
form once in LAB space.  Table 4 shows the somewhat
surprising results contrasting the spline fit alone to the
spline fit with SLI, for a 3% noise model.

A pattern of decreasing-then-increasing trends simi-
lar to Tables 1 to 3 has emerged, and it appears that a
degree 3, 1 segment spline alone is best.  The remark-
able point is that approximating the spline with the 8×8×8
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SLI look-up table has reduced the error in many cases;
effectively, this piece-wise linear function is smoothing
out some of the noisy bumps in the spline.  Experiments
with 0.5%, 1%, 2% and 5% noise factors showed simi-
lar results.

Conclusions

Rather than giving us hard numerical advice, the simple
Neugebauer model and small subset of parameter/noise
combinations give us ideas about fitting.  We can make
the following conclusions:

• noisy characterization data must be smoothed be
fore interpolation makes sense

• tensor product splines can be used to smooth char
acterization data effectively

• low-degree splines with medium numbers of seg-
ments appear to give good fits

• SLI approximations to smoothed data can actually
reduce the characterization error

Table 4.  Error in spline fit, and spline fit with SLI, to
(Neugebauer model +  3% noise × ∆XYZ)

Degree Segments Mean ∆E Max ∆E

    Spline +SLI Spline +SLI
1 1

2
3
4
5

6.64
3.43
3.02
3.15
3.48

6.64
3.22
2.89
2.97
3.22

30.92
19.50
15.34
13.80
17.71

30.92
19.50
15.34
13.80
15.56

2 1
2
3
4
5

2.97
2.81
3.08
3.41
3.82

3.01
2.81
2.97
3.17
3.23

14.44
14.15
16.93
22.53
27.55

14.60
14.15
17.74
22.32
26.94

3 1
2
3
4
5

2.79
3.08
3.39
3.83
4.36

2.80
2.97
3.15
3.31
3.62

14.94
17.87
23.98
26.84
31.00

14.94
18.84
23.65
26.25
28.68

4 1
2
3
4
5

3.08
3.39
3.83
4.36
4.87

2.97
3.15
3.35
3.61
3.72

17.90
23.81
26.73
34.75
41.87

18.92
23.74
25.46
30.67
38.89

Once further experiments are completed with a more
advanced printer model and some real characterization
data, we expect to conclude that

• theoretical tables can be used to give optimal fit-
ting parameters for real characterization data, once
the noise level is determined empirically

The effect of the SLI stage on accuracy needs to be
studied in more depth, along with methods of  determin-
ing optimal SLI grid points from a linear spline func-
tion.  The algorithms used here work effectively in more
than three dimensions; it is possible that even better ac-
curacy, or at least more versatile gamut-mapping tech-
niques, can be achieved by fitting in high-dimensional
reflectance spaces.3

This research allows us to make better judgments
about which spline parameters suit characterization data
for real-world problems.  We believe that spline smooth-
ing, and fast interpolation with SLI, are an effective com-
bination of techniques for characterizing non-linear
devices, and performing gamut-mapping.
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