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Abstract 

Hybrid resolution spectral imaging produces spectral images 
from high-resolution RGB images and corresponding low-
resolution spectral data. Various methods have been proposed, 
whereas the low-resolution spectral data are regarded as the 
sample data of target scenes. However, this approach is not 
appropriate when each spectrum in the low-resolution data may be 
a mixture of spectra with different spectral features, and the 
original spectral feature is lost by averaging them. To solve this 
problem, class-based regression method for mixed low-resolution 
spectral data was proposed. In this method, the spectral estimation 
matrix for every class is derived using a regression approach, 
where the clustering results of the high-resolution RGB image are 
used to incorporate spectral unmixing. However, the method was 
tested only for small regions of images. In this paper, spectral 
images are estimated by the class-based regression method for 
three test spectral images, and the accuracy is compared with two 
conventional methods for hybrid resolution spectral imaging. 
Experiments confirm that the spectra are accurately reconstructed 
only by class-based regression method when they are observed as 
mixed spectra in the low-resolution data. 

Introduction 
The concept of hybrid resolution spectral imaging was 

originally proposed by Imai and Berns [1], and it has progressed as 
a new type of spectral imaging schemes recently [2-5]. In these 
schemes, spectral images are estimated from two types of data 
with different spatial and spectral resolutions: high-resolution 
RGB images and corresponding low-resolution spectral data, for 
instance (Fig.1). Various estimation methods were proposed 
mainly for the above-mentioned combination of data. 

In the field of remote sensing, similar recovery techniques 
from multisensor data sets have already been studied, and they are 
called “image fusion (merging)” [6-8]. However, in the field of 
color imaging, this image fusion technique is only recently 
introduced. 

The methods, previously proposed by the authors [2-4], 
define one or more linear mapping matrices from the RGB data to 
the spectra, which are generated by using low-resolution spectral 
data as training data. Then, a spectral image is estimated from its 
corresponding high-resolution RGB image by the derived mapping 
matrices. However, in some cases, it is not appropriate for the 
measured low-resolution spectral data to be used as training data 
of the scene spectra as described below. 

Low-resolution spectral data are supposed to be measured by 
averaging over some area. This area often will be larger than the 
pixel size of the high-resolution RGB images because 
measurement of spectra over a larger area increases light energy 
sampled. If various spectra with different spectral shapes are 
located in a relatively small region, these different spectra are 

averaged and measured as a single set of data at low resolution. As 
a result, some spectral features of original spectral scenes can be 
lost. 

Estimating pure spectra from a mixed spectrum is a classic 
problem called “spectral unmixing” in the field of remote sensing 
[9]. In addition, the combination of spectral unmixing and image 
fusion techniques has been investigated as unmixing-based fusion 
[10,11]. However, the mixing models used in these methods are 
not necessarily appropriate to represent gradational color changes, 
which often appear in natural scene images. 

To solve this problem, recently, a class-based regression 
method was proposed for hybrid resolution spectral imaging [12]. 
This method designs spectral estimation matrices considering that 
low-resolution spectral data are assumed to be mixtures of the 
spectra from multiple classes. The preliminary experiments 
showed that the spectral were accurately reconstructed even when 
they were observed as mixed spectra in the low-resolution data. 
However, the method was tested only for small regions of images. 

In this paper, class-based regression method is applied to 
three test images, and the accuracy is compared with two 
conventional methods for hybrid resolution spectral imaging. 

Hybrid resolution spectral imaging by class-
based regression method 
Numerical model for hybrid resolution spectral 
imaging 

Let us introduce the image formation, which is assumed in the 
hybrid resolution spectral imaging discussed in this paper. It is 
assumed that a data acquisition system produces a high-resolution 
B-band image (B=3 in the case of RGB images) without spatial 
degradation and a low-resolution spectral image without spectral 
degradation from the same original image of spectral reflectance. 

  
Figure 1. Conceptual diagrams of hybrid resolution spectral imaging for 
high-resolution RGB images and low-resolution spectral data. 
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In addition, these two images are supposed to be spatially 
registered. For simplicity, the original spectral image is treated as 
discrete signals below. 

Let ( )if  be an L-dimensional column vector representing the 
spectral reflectance function of the original spectral reflectance 
image at pixel i , where L is the number of spectral samplings, and 

211 NNNi ×=≤≤ . The original spectral reflectance image is 
represented by an NL×  matrix, 

( ) ( ) ( ) ( )[ ]Ni ffffF ,,,,2,1 LL=  (1) 

Digital imaging devices can be modeled as linear systems if 
the nonlinearity of the system is adequately corrected. Then, the B-
band image signal ( )ig  corresponding to ( )if  is represented by 

( ) ( ) ( )iii GG εfHg +=  (2) 

where GH  is a LB×  system matrix comprising the spectral 
characteristics of the camera and the illumination spectrum, and 

( )iGε  is a B-dimensional noise vector. In Eq. (2), it is assumed that 
there is no spatial degradation. The whole B-band image 

( ) ( ) ( )[ ]NgggG ,,2,1 L=  is given by 

GG ΕFHG +=  (3) 

where ( ) ( ) ( )[ ]NGGGG εεεΕ ,,2,1 L= . 
Let ( )js  be an L-dimensional column vector representing the 

spectral data of a low-resolution spectral image at pixel j  
( 211 MMMj ×=≤≤ ). Let jΩ  be the area in the original 
spectral image corresponding to the j-th pixel of the low-resolution 
spectral image. Then, assuming that the spectral reflectance 
functions included in jΩ  are spatially averaged and observed 
without spectral degradation, 

( ) ( ) ( )jij S
i j

εfs +∑=
Ω∈

 (4) 

where ( )jSε  is an L-dimensional noise vector, and the spatial 
sensitivity of the spectral sensor is assumed to be uniform. If we 
define an MN ×  matrix SH  as 

[ ]
⎩
⎨
⎧ Ω∈

=
else

i j
ijS 　　

　

0
1

H  , (5)  

then the whole low-resolution spectral image 
( ) ( ) ( )[ ]MsssS ,,2,1 L=  is  

SS ΕFHS +=  , (6)  

where ( ) ( ) ( )[ ]MSSSS εεεΕ ,,2,1 L= . 
The problem of the hybrid resolution spectral imaging is to 

estimate NL×∈RF  from its linear observations NB×∈RG  and 
ML×∈RS , under the conditions that LB <  and NM < . 

Class-based regression method for mixed low-
resolution spectral data [12] 

The method consists of the following three steps.  
Step 1: RGB image segmentation: The pixels of a high-

resolution RGB image are classified into K classes to obtain a 
segmented RGB image.  

Step 2: Extraction of class-based estimation matrices: Based 
on a regression technique, class-based estimation matrices are 
extracted from a low-resolution spectral image and the segmented 
RGB image.  

Step 3: High-resolution spectral image reconstruction: The 
spectral image is estimated pixel by pixel from the segmented 
RGB image by means of the class-based estimation matrices.  

The Step 2 is explained in detail below. As a result of the 
classification of Step 1, every ( )ig  is assigned to one of the K 
classes. Let k#A  be an class-oriented estimation matrix from ( )ig  
to ( )if  if the pixel is assigned to class #k:  

( ) ( ) kii kk |ˆ
## gAf =  , (7)  

where ( ) ki |g  represents that ( )ig  is assigned to class #k.  
To derive k#A , we introduce several new variables:  
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( ) ( )[ ]NggG ~,,1~~
L=  . (10)  

The vector ( )ig~  is a KB-dimensional column vector and the matrix 

G~  is a ( ) NKB ×  matrix.  
By using these variables, Eq. (7) can be rewritten as 

( ) ( )iik gAf ~~ˆ
# =  , (11)  

where A~  is an ( )KBL ×  matrix described by 

[ ]K#1#

~
AAA L=  . (12)  

To perform the regression estimation based on Eq. (11), the low-
resolution version of G~  is calculated as 

SHGT ~~
=  , (13)  

where T~  becomes a ( ) MKB ×  matrix. The j-th column vector of 

T~ , ( )jt~ , implicitly contains the information about the ratio of the 
spectra of each class mixed in the j-th spectral data ( )js . In 

addition, the relation between ( ) ( )jj ts ~⇔  is approximately same 

as that of ( ) ( )ii gf ~⇔ . Therefore, by using ( ) ( )jj ts ~⇔  pairs as 

training data, the regression estimation matrix A~  is obtained by 
minimizing 
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=

M
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unmix jjΦ
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~~
tAs  , (14)  

if MKB << . The solution is given by 

( ) 1~~~~ −
= TT TTTSA  . (15)  

By substituting Eq. (15) into Eq. (11), we estimate the high-
resolution spectral image by class-oriented estimation matrices. 

Experiments 
Data 

We prepared three 512512×  spectral reflectance images 
consisting of 61 wavelength samplings in the range of 380 to 680 
nm with an interval of 5 nm. These spectral reflectance images 
were obtained with the Wiener estimation from a multispectral 
image captured by a sixteen-band camera [13]. The images are 
presented in color images in Fig. 2 (second column from right). 
We call them “Toys”, “Scarf”, and “Flower”. 

Two types of observations were assumed from each of the test 
spectral images. High-resolution RGB images were calculated 
from the spectral reflectance images using the spectral sensitivity 
of a typical HDTV video camera and the spectrum of the CIE 
standard illuminant D65. For simulating noise, Gaussian random 
white noise was added to the image data, where the peak-signal-to-
noise ratio (PSNR) was set at 50 dB. 

Each spectrum in the low-resolution spectral data was 
generated as the average spectrum of a rectangle region whereas 
the averaging regions neither overlapped nor are separated. The 
number of pixels of the low-resolution spectral data is 88× , 

1616× , and 3232× . The low-resolution spectral data are shown 
in color images in left three columns in Fig. 2 to demonstrate the 
size of the pixel of the low-resolution spectral data. It can be seen 
that the colors in the small region in the test images of “Scarf” is 
nearly lost in the low-resolution data while the typical colors in the 
test images of “Toys” are sufficiently recognized in the low-
resolution data. In the case of “Flower”, red colors of the roses are 
lost by averaging with the green colors of the leaves especially for 
the 88×  resolution. 
Estimation methods 

We compared the class-based regression method with two 
conventional methods for hybrid resolution spectral imaging. 

The first is Wiener estimation [3], where the spectral 
correlation matrix R is calculated using the low-resolution spectral 
data: 

( ) ( ){ } TM

j

T

M
jj

M
SSssR 11

1
=∑=

=
 , (16)  

The second method is Piecewise Wiener (PW-Wiener) 
estimation [4]. High-resolution RGB images are divided into 
blocks, where each block is indexed by q ( )Qq ≤≤1 , and the 
estimation is performed by the estimation matrix defined for every 

 
Figure 2. For three test images, Toys, Scarf, and Flower, from top down, low-resolution spectral reflectance images shown in color images with 8x8, 16x16, 
and 32x32 resolution, Original spectral reflectance images shown in color images, and clustering results, from left to right. 
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block. Each estimation matrix is calculated using the Wiener 
estimation theory. The spectral correlation matrix for block q, qR , 
is calculated using the low-resolution spectral data that are 
weighted according to the Euclidean distance ( )jqd ,  between the 
center position of block q and the center position of low-resolution 
spectral data  ( )js : 

( )
( ) ( ) ( ){ }∑

∑
=

=

=

M

j

T
M

j

q jjjqw
jqw 1

2

1

2
,

,

1 ssR , (17)  

( ) ( )jqdjqw ,, ρ= , (18)  

where ρ  was set to 0.7. In the implementation, to avoid 
discontinuities at the block boundary, the estimation of a pixel is 
performed using the matrix assigned to its neighboring blocks as 
well as its own block; these are summed by using a two-
dimensional Hamming window. 

In class-based regression method, segmentation of high-
resolution RGB images was performed based on two dimensional 
(r, g) signals defined by 

BGR
Gg

BGR
Rr

++
=

++
= ,  , (19)  

because (r, g) signals are independent to power of spectra. The 
clustering was based on Gaussian mixture model (GMD); the 
probability density of GMD is estimated to fit sampled data by 
using an expectation maximization algorithm, and each data are 
assigned to a class, based on the estimated posterior probability. 
The number of the clusters K is defined based on Akaike 
information criterion which is a measure of the relative goodness 
of fit of a statistical model: 7=K  for “Toys” and “Scarf”, and 

5=K  for “Flower”. The segmentation results are shown in 
rightmost column in Fig. 2. Note that other color spaces or textural 
information can be used for the clustering, but normalization such 
as Eq. (19) will be required to obtain the similar results. 
Results 

Below, we use the capital letters for the colors in the 
segmentation images: R (red), G (green), B (blue), Y (yellow), C 
(cyan), M (magenta), W (white), while the name of colors are used 
without abbreviation for the actual colors, as red, green, and 
orange, etc. In addition, we call three methods Wiener, PW-
Wiener, and class-based regression. 

Figure three shows the results for three test images. The 
accuracy of the estimated spectral reflectance images are measured 
by the average of CIELAB error under F7. The error is calculated 
for whole image and respective class. Moreover, the number of 
pixels included in each class is presented with a bar graph (right 
axis). The horizontal color bar shows the corresponding color of 
each class in the segmentation images. Figure four shows error 
images of 200200×  regions for three methods in the case of the 

1616×  resolution of the low-resolution spectral data. The regions 
are selected to include the classes which show the differences in 
accuracy between the methods in the results of Fig. 3. The range of 
0–20 of CIELAB error was allocated to 8-bit grayscale. Below, the 
results of Figs. 3 and 4 are discussed for every test image. 

 Toys: Fig. 3 shows that the large errors by Wiener for #5(C) 
and #6(M) are reduced by both PW-Wiener and class-based 
regression, regardless of the resolution of the low-resolution 

spectral data. In addition, for all classes, PW-Wiener and class-
based regression gave similar accuracy. This is because the spectra 
in the low-resolution spectral data well represent the original 
spectra, without mixing spectra from different classes. Therefore, 
it can be said that PW-Wiener and class-based regression are 
approximately equivalent and better than Wiener in the case of 
unmixed spectra. The error images in Fig. 4 support this result.  

Scarf: Fig. 3 shows that the large errors by Wiener and PW-
Wiener for #7(W) are effectively reduced by class-based 
regression. From the clustering results in Fig. 4, we can see that 
the class #7(W) consists of the narrow lineal areas in green on the 
orange background and other small green areas. As a result, the 
spectral information of these areas should be almost lost in the 
low-resolution spectral data.  Nonetheless, class-based regression 
realizes high accuracy, which is considered as the effect of spectral 
unmixing. For class #6(P), relatively large error occurs by class-
based regression in the case of the 88×  resolution of the low-
resolution spectral data. We think that this is caused by two 
factors: first is that the number of  pixels in the class is relatively 
small, and the second is that the number of the data for the 
regression ( 6488 =×=×MM in this case) is not sufficient 
compared to the number of unknowns ( 2173 =×=×KB

 
in this 

case). Therefore, the number of classes should be selected not only 
by appropriateness of the clustering but also the resolution of the 
low-resolution spectral data; if the resolution is low, large number 
of classes cannot be used.  

Flower: Fig. 3 shows that the large errors by Wiener and PW-
Wiener for #1(R) are effectively reduced by class-based regression. 
From the clustering results in Fig. 4, we can see that the class 
#1(R) corresponds to the red roses on the green background. 
Considering the size of the roses, spectral information of roses are 
almost lost in the low-resolution spectral data especially for 88×  
resolution. As a result, large errors occur by Wiener and PW-
Wiener. Nonetheless, class-based regression realizes high accuracy, 
which indicates that class-based regression has the effect of 
spectral unmixing.  

Conclusions 
In this paper, class-based regression method for mixed low-

resolution spectral data was applied to reconstruct three spectral 
images. The estimation accuracy was evaluated for every class and 
compared to two conventional methods for hybrid resolution 
spectral imaging. As a result, it can be confirmed that class-based 
regression method works effectively for full-size images without 
any prominent problems. In addition, evaluation results show that 
PW-Wiener estimation method and class-based regression method 
are almost equivalent and better than Wiener estimation method 
when the low-resolution spectral data are not the mixture of the 
spectra from different classes; namely, when the spatial 
configurations of scenes are rough. Otherwise, i.e., fine spectral 
configurations exist in the scenes, relatively large error can occur 
in specific classes by Wiener and PW-Wiener estimation methods, 
while this error is effectively reduced by class-based regression 
method.  Therefore, we can conclude that class-based regression 
method has the effect of spectral unmixing for mixed low-
resolution spectral data even when it is applied to full-size images. 

This research is supported by KAKENHI (20-40108). 

19th Color and Imaging Conference Final Program and Proceedings 313



 

 

 

 
 

Figure 3. Simulation results for three test images, Toys, Scarf, and Flower, from top to bottom. Plots are average E*ab under F7 illumination for whole 
images and respective class by three methods. The number of pixels included in each class is presented in bar graph (right axis). 
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Figure 4. Error images for 200x200-pixel regions for three test images, Toys, Scarf, and Flower, from top down, in the case of 16x16 resolution of low-
resolution spectral data. From left to right, original color images, clustering results, and error images for three methods. The range of 0–20 of CIELAB error 
was allocated to 8-bit grayscale. 
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