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Abstract 
This paper describes a method to estimate color signals in high 

dynamic range (HDR) scenes. Color signals of incident light into 

an imaging system consist of the direct spectra of light sources 

and the indirect spectra of the reflected lights from different object 

surfaces in a scene. In our study, Wiener estimation method is 

adopted for reconstructing color signals. The Wiener estimator 

requires prior statistical information such as the correlation 

matrix of spectral dataset and the covariance matrix of imaging 

noise. In Wiener estimation, the fixed matrices of imaging noise 

and spectral dataset are generally applied to all pixels in an 

image. However, the imaging noise and spectral dataset are 

dramatically changed in HDR scenes. Therefore, it is required to 

determine the suitable estimation matrix for HDR scenes. In this 

paper, we propose a method for determining suitable noise level 

and spectral dataset which are applied to Wiener estimation in 

HDR scenes. For validating our method, experiments using actual 

HDR scenes are conducted. Experimental results show the 

proposed method is efficient compared with the conventional 

Wiener estimation method, and can reconstruct accurate color 

signal scale in HDR scenes. 

 

Introduction 
Spectral analysis of a variety of color signals in a natural scene is 

definitely one of the most important research problems in the 

recent color image science and technology [1-5]. This problem 

often includes (1) acquisition of high dynamic range (HDR) 

spectral images in outdoor natural scenes and (2) estimation of 

color signals from the image data [6]. The color signals of incident 

light into an imaging system consist of the direct spectra of light 

sources and the indirect spectra of the reflected lights from 

different object surfaces in a scene. The color signals in an HDR 

scene have the wide range of luminance level from very dark 

shadow area to highly bright sky. Therefore the problem of color 

signal reconstruction requires an HDR technique [7]. 

So far many estimation methods were proposed for estimating 

the color signals from image sensor outputs [8–11]. The Wiener 

estimator is well known and widely utilized for recovering spectral 

information from noisy observations. This estimator requires prior 

statistical information such as the correlation matrix of spectral 

dataset and the covariance matrix of imaging noise. These 

statistical data significantly affect the estimation accuracy. 

Therefore there were many attempts to determine suitably the 

statistical data in advance [12–16]. 

However, most of the previous works addressed the spectral 

estimation, not in HDR scenes but in limited dynamic range scenes 

or low dynamic range (LDR) scenes. Therefore it should be noted 

that the same estimator with fixed statistical parameters was 

applied to every pixel of the entire image in a natural scene. On the 

other hand, HDR scene contains a huge difference in pixel values. 

So the statistical parameters should be determined dependently on 

the luminance level of the scene. For instance, the correlation 

matrix of color signals is determined using two databases of 

surface-spectral reflectances and light source spectra. In this case, 

how should we specify the intensity values of light source spectra 

suitable for the wide range of luminance in an HDR scene? Also 

the noise characteristics in HDR images are significantly different 

from the ones in LDR images. We have to determine the noise 

variance suitably for HDR imaging. 

The present paper describes a method for determining the 

statistical parameters of imaging noises and color signals in order 

to improve estimation accuracy of color signals in an HDR scene. 

First, a noise level function is modeled for estimating the noise 

statistics, which is based on measurements of a LDR scene. This 

function is then extended to HDR images based on the theory of 

HDR image synthesis. Second, the database of color signals is 

created by taking account of luminance values and color 

temperatures of real light sources. Third, we define the Wiener 

estimator with variable statistical parameters on noise and color 

signal properties. An estimation algorithm of color signals is then 

presented using the improved Wiener estimator. Finally, the 

feasibility of the proposed method is examined in real HDR scenes. 

Imaging System and HDR Image Acquisition 

Imaging System 
We use an imaging system for capturing multiband images, and a 

spectro-radiometer for directly acquiring illuminant spectral-power 

distribution in a particular region of a scene.  The imaging system 

consists of a trichromatic digital camera and two color filters.  The 

camera is a Canon EOS 1Ds Mark II with the image size of 4082 x 

2718 pixels, the linear response characteristic and the bit depth of 

12 bits. The two additional color filters with different 

characteristics of spectral transmittance are used for multi-spectral 

image acquisition. Combining these color filters to the original 

camera spectral sensitivities leads to different sets of trichromatic 

spectral sensitivity functions. Therefore, two sets of the modified 

trichromatic spectral sensitivities result in an imaging system with 

six spectral bands. Figure 1 shows the overall spectral sensitivity 

functions of our imaging system. 

HDR Image Acquisition 
An HDR image is acquired conveniently by combing multiple 

LDR images captured at different exposure times [7]. Since our 

imaging system has linear response characteristics, the sensor 

outputs (pixel values) ρ  at two different exposure times satisfy a 

relationship as 

( ) ( )( ) ( )( )
,

( )

t i t jt i

t j
ρ ρ=x x

                                                          
(1) 

where x is the spatial coordinates on an image, ( )t iρ  and ( )t jρ  are 

the sensor outputs at exposure times t(i) and t(j). Based on this 
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relationship, an HDR image can be obtained from LDR images as 

follows. 
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where HDRρ  is the pixel values of the synthesized HDR image, τ  is 

the threshold for clipping saturated pixels, m is the number of LDR 

images, and t is exposure time ( ( ) ( )1t t m> >L ). In later 

experiments, we set τ = 3500. 

 

 
Figure 1. Spectral sensitivity functions of the six-band imaging system. 

Noise Estimation for HDR Images 
Imaging noise is usually assumed as random white noise. A noise 

variance with a fixed standard deviation is often used for the 

estimation at all pixels. Strictly speaking, imaging noise is not 

random white noise [17, 18].  For noise estimation, Tsin et al. 

showed a CCD camera image pipeline and a generalized noise 

model [19]. Then, Liu et al. proposed a noise estimation method 

using a noise level function [20].  However, these previous 

methods are limited to LDR images. Here we develop first a 

measurement-based noise level function of an LDR image and then 

extend this function to HDR images. 

Noise Measurement and Noise Level Function 
In order to estimate noise characteristics of the present imaging 

system, we captured one hundred images of known objects, and 

calculate the average sensor output and the standard deviation at 

each pixel. The sensor output is described as a sum of signal 

component and noise component: s nρ = + .  First we investigate 

the dark current at every pixel points of the present imaging system.  

This measurement is subtracted from each sensor output as a bias 

term. Then we assumed that the average of noise n was zero. 

Figure 2 shows an LDR scene for the measurements and the noise 

characteristics. As shown in Fig.2, the noises (standard deviations) 

in each color channel have linear characteristics to noise-free 

sensor outputs (average sensor outputs). We can also see no 

different characteristics among the sensors (color channels). Figure 

3 shows the noise characteristics on four types of images which 

taken by different exposure times. From this result, regardless of 

the exposure times, the captured images have the same linear 

characteristic between noises and noise-free sensor outputs. 

Now let the signal component s and the noise n be the average 

sensor outputs ρ and the standard deviations σ respectively. Then, 

based on the noise measurements, we modeled the noise level 

function of ρ  as linear model as 

,a bρσ = +                                          (3) 

where a and b are the coefficients of the linear noise level function. 

In actual our imaging system, the coefficients a and b are set as 

0.011 and 4.35, respectively. Figure 4 shows the linear noise level 

function and the actual measurement noise. 

 

   
Figure 2. LDR scene for noise measurement and noise characteristics. 

 
Figure 3. Noise characteristics at different four exposure times. The exposure 

times are 0.2, 0.4, 0.6 and 0.8 sec. 

 
Figure 4. Noise level function of our imaging system (solod line) and actual 

measurement noise (scatter plot). 
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Extended Noise Level Function for HDR image 
HDR images are acquired by replacing the saturated pixels of long 

exposure images with the ones of short exposure images. In this 

process, the pixel values of a short exposure image are multiplied 

by the ratio of the exposure time. This process means that, in the 

HDR image synthesis, the noise levels increase as well as the 

sensor outputs (pixel values) shown in Eq.(2). The following 

equation is the example of noise characteristics of an HDR image 

synthesized from three LDR images. 
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Based on this observation, we can assume the noise level 

function for HDR images as 

 ,HDR HDR ta c bρσ = +                                                                (5) 

where ct is the ratio of the exposure time, for instance, t(1)/t(i) in 

Eq.(4). The solid line in Fig.5(a) shows the extended noise model 

for an HDR image synthesized from four LDR images. The scatter 

plot in Fig.5(a) is the actual measurement noise calculated from 

one hundred HDR images shown in Fig.5(b). As shown in Fig.5, 

the estimation using the extended noise level function is efficient, 

compared with the actual measurement noise from one hundred 

HDR images. 

 

   
(a) Noise level function                                (b) HDR scene 

 

Figure 5. Noise level function for HDR images. The solid line is a noise level 

function computed from Eq.(5), and the scatter plots are actual measurement 

noise calculated from one hundred images in HDR scene (b). 

Color Signal Estimation from HDR Images 

Overview 
Figure 6 shows the overview of our color signal estimation. At first, 

we obtain the noise-free sensor output s and noise n by using the 

noise level function (See the previous section). Next, we calculate 

the illuminant power scale for determination of suitable color 

signal database (Described in Section “Suitable database of color 

signals for HDR scenes”). Finally, color signals are reconstructed 

by the improved Wiener estimation with the correlation matrix of 

suitable color signal dataset and the covariance matrix of estimated 

noises (Described in Section “Improved Wiener Estimator”). 

 

 
Figure 6. Overview of our color signal estimation. 

Improved Wiener Estimator 
The image sensor outputs are modeled as a following linear system. 

( ) ( ) ( ) ( )

( ) ( )

,

,

1,..., 6,

i i i

i i

E R d n

s n

i

ρ λ λ λ= +

= +

=

∫x x x

x x
                                      

(6)
 

where E(λ) is the incident color signal into an imaging system, 

Ri(λ) is the spectral sensitivity function of the i-th sensor. In this 

study we sample all spectral functions at 61 wavelength points in 

even intervals of 5 nm in the range of [400, 700nm]. Then we can 

rewrite Eq.(6) in a matrix form: 

,

= +

= +

ρ Re n

s n
                                                                          (7) 

where e is the 61-dimensional vector representing the color signal 

E(λ), R is a diagonal matrix with the size of 6x61 for the spectral 

sensitivity function, ρ is the 6-dimensional sensor output, n is the 

6-dimensional noise vector,  s is a 6-dimensional signal which 

corresponds to the noise-free sensor output. 

When color signal e and noise n are uncorrelated, the 

estimated color signal ê  is given by 

1t t
ss ssˆ ) ,( −= +e C R C Σ ρR R                                              (8) 

where Css is the correlation matrix of color signals and Σ is the 

covariance matrix of noises as follows. 

t

t

ss ],E[

E[ ].

=

=

C ee

Σ nn

 
                                                                      (9)

 

In the estimation, we can assume that the noises in each spectral 

channel are statistically independent. In this case, the covariance 

matrix is reduced to be diagonal as 

2 2 2
1 2 6diag( , ,..., ).σ σ σ=Σ                                                     (10) 

From Eq. (8), Wiener estimation is decided by 3 matrices: R, Css 

and Σ. In general, R and Σ are fixed for the imaging system. Css is 

usually calculated from color signal database. In our study, we 

utilize Σ computed from the estimated noises. As described above, 

we can regard the average sensor outputs ρ and the standard 
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deviations σ as the signal component s and the noise n, 

respectively. Then by using Eqs.(5) and (6), we can rewrite the 

extended noise model as follows. 
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+
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where, ˆ
iσ is the noises in an HDR image, which are calculated 

based on the extended noise level function. From Eq.(12), we 

acquire the noise covariance matrix for HDR images as follow. 

2 2

1 6
ˆ ˆ[ ,..., ].HDR diag σ σ=Σ                                                (13) 

Suitable database of color signals for HDR scenes 
The accuracy of Wiener estimation depends on the statistics of 

color signal dataset. To determine the correlation matrix Css 

properly, we used two datasets of surface-spectral reflectances and 

illuminant spectra. 

Figure 7(a) shows a set of 1378 surface-spectral reflectances 

for natural objects and artificial objects. Figure 7(b) shows an 

illuminant database consisting of nine light sources, which are the 

CIE standard spectral-power distributions of daylights with 

different correlated color temperatures from 5000K to 10000K 

[18] and the measured spectral-power distribution of daylight by 

using the spectro-radiometer. 

In general, color signal dataset is generated by multiplying the 

surface-spectral reflectances and the illuminant spectra. However, 

in HDR scenes, the illuminant power scale and the color 

temperature significantly affect sensor outputs. Then it is necessary 

to achieve the suitable illuminant scale and color temperature. For 

the determination, two-steps algorithms are implemented. 

Step 1: Determination of illuminant intensity. The illuminant 

intensity fitted to the sensor outputs ρ determined by the following 

fitting procedure: 
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( )
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where c is a coefficient for adjusting illuminant intensity, E6500 is a 

61x61 diagonal matrix representing the spectra of black body 

radiator with color temperature 6500K, and r  is the average 

reflectance vector of surface reflectance dataset. We determine the 

coefficient c to minimize the above fitting error. 

Step 2: Determination of color temperature. The color 

temperature k of illuminant is determined by the following fitting 

procedure: 

( )
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E
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(15) 

where Ek is the illuminant spectra of k Kelvin. 

The illuminant scale factor c and illuminant spectra with 

suitable color temperature Esui are determined by the above steps 

and applied for generating the correlation matrix. 

( ) ( )
HDR

t

ss ].E[ sui suic c=C E r E r

                                         

(16) 
 

 
(a) Reflectances                                 (b) Light sources 

Figure 7. Spectral function databases. 

Experiments 

Experimental Setups 
We used three HDR scenes shown in Fig.8, which include indoor 

and outdoor HDR scenes. HDR images are synthesized from the 

LDR images captured using the six spectral band imaging system 

described in the previous section. Figure 8(c) is an omnidirectional 

image in a natural scene. The image is captured by a similar 

imaging system. See Ref.[6] for detail. The red points and squares 

in the images are the measurement spots by using the spectro-

radiometer. The number of measurement spots in Fig.8(a)~(c) are 

35, 10 and 10 points, respectively. We also prepared a white 

reference in the scene and measured the spectra. 

 

  
(a) Scene #1                                         (b) Scene #2 

 
(c) Scene #3 

Figure 8. HDR scenes prepared in our experiments. 

Results and Discussion 
For confirming the effectiveness of the proposed method, we 

estimate the color signals by the conventional Wiener estimation 
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method. In the conventional estimation, the noise is set at SNR = 

40dB, and color signal dataset is generated by multiplying the 

surface-spectral reflectances and the illuminant spectra shown in 

Fig.7. 

Figure 9 shows the statistical errors of color estimation 

accuracy. In general, CIELAB color difference is used for 

evaluating color accuracy. In this calculation, reference white is 

required. However, when using white reference in HDR scenes, 

CIELAB color difference often becomes very large values, and it is 

difficult to understand the color estimation accuracy properly. 

Therefore, we used normalized root mean square error (NRMSE) 

[15] instead of CIELAB color difference. Figure 9 shows the 

NRMSE of the estimated color signals, which is defined by 

( )
( )

2

2

ˆE
.

E

NRMSE
−

=
e e

e

                                                       
(17)

 

As shown in Fig.9, the proposed method is efficient for estimating 

color signals in HDR scenes, comparing with the conventional 

Wiener estimation method. 

Figure 10 and 11 show the measured and the estimated color 

signals of Fig.8(b). Since we estimate the color signals in HDR 

scenes, two types of the horizontal axis scales are represented in 

Figs.10 and 11, respectively. The red lines in the figures are the 

color signals of the white reference. In the figures, each 

measurement or estimated color signal is normalized by the 

spectral power of each white reference: 
2 2

ˆ 1white white= =e e . As 

shown in Figs.10 and 11, the proposed method can reproduce the 
accurate scales of color signals in HDR scenes, comparing with the 

conventional Wiener estimation method. 

 

 
Figure 9. NRMSE of color signals. Error bars mean the maximum and 

minimum NRMSE in each scene. 

 

     
(a) Ground truth (measurement data)                      (b) Conventional Wiener estimation                          (c) Proposed Wiener estimation 

Figure 10. Ground truth and estimated color signals in HDR scene of Fig.8(b). The figures are shown in wide horizontal axis scale. Red lines show the color signals 

of white reference which is utilized for normalizations.  

     
(a) Ground truth (measurement data)                      (b) Conventional Wiener estimation                          (c) Proposed Wiener estimation 

Figure 11. Ground truth and estimated color signals of Fig.8(b). The figures are shown in narrow horizontal axis scale. 
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Conclusion 
This paper has described a method to estimate color signals in 

HDR scenes. In particular, our method focuses on the acquisition 

of suitable imaging noise and spectral dataset in HDR scenes. In 

the acquisition of the suitable imaging noise, at first, we modeled 

the noise level function in LDR images as a linear function. Based 

on the theory of HDR image synthesis, we extended the noise level 

function for HDR images. In the acquisition of the suitable color 

signal datasets, suitable power scales and color temperatures of 

light sources were obtained from sensor outputs. Finally, for 

reconstructing color signals in HDR scenes, the suitable noise level 

and color signal database were applied to Wiener estimation. For 

validating our method, we show the experiments results of the 

color signal estimations in actual three HDR scenes. The 

experimental results showed the proposed method is efficient 

compared with the conventional Wiener estimation method. In 

particular, the proposed method could reconstruct accurate color 

signal scale in HDR scene. 

In this paper, the noise level function is modeled on the basis 

of the linearity between sensor outputs and noises. However, there 

are various types of noise characteristics in practical imaging 

systems. Then, it is necessary to consider a generalized noise level 

function for HDR imaging. In addition, we need to improve the 

two-step algorithm to acquire suitable dataset. Recently, a lot of 

methods have been proposed to acquire the suitable correlation 

matrix related with spectral database. Then, for acquiring suitable 

dataset for HDR scenes, we would like to incorporate the 

conventional techniques into our method and improve the suitable 

dataset acquisition algorithm. 
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