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Abstract 
In consumer imaging applications involving photo collages or 

composition of user photos with professional artwork, inconsistent 
color appearance of photos and artwork from different sources can 
result in compositions that do no look aesthetically pleasing.  
Users often express a desire to modify individual images to achieve 
a more consistent color appearance.  Prior work in color transfer 
that extract the color properties of one image and apply it to 
another have shown very interesting results [1,2].   These works 
focused on achieving an artistic effect, usually without the 
constraint of conserving object color.   In consumer imaging, we 
have to be more conscious about conserving general object color 
and especially skin tones, which are not amenable to aggressive 
color change.   In this paper we describe an algorithm to estimate 
the color and tone properties of an image and transfer these 
properties to another image under a strong naturalness constraint.  
In our method, color changes are constrained to correspond to 
incomplete adaptation under natural illuminants.  We use a simple 
Bayesian method to characterize scene color properties, expressed 
as scene color temperature and illumination levels.  An existing 
color adaptation model RLAB [3] is used to apply color changes 
by simulating incomplete adaptation to a colored target  
illuminant.  We emphasize that this is not a method of white point 
estimation nor a white balance  procedure  Rather, we use color 
adaptation models as a means to ensure color adjustments to be 
“plausible”, and therefore maintain a natural appearance to the 
images even after significant color adjustments. 

Introduction  
As personal publishing starts to replace simple photo printing 

as the dominant consumer photo activity,  there is an increasing 
demand for automatic composition of multiple photos into a 
themed page with a professionally designed appearance.   Photos 
from user collections are frequently from several digital cameras of 
varying qualities, taken at different time, locations, and events, and 
occasionally from scanned materials or images found on the 
internet.  Users are rarely willing to separate related content or 
group unrelated content simply based on color consistency.  
Therefore, it is not uncommon to see images of different color 
characteristics and tone properties being put into the same 
composition due to their content relevancy (Figure 1).   In addition, 
most photo composition softwares provide professional template 
artworks for a page, which tend to have very different style and 
color characteristics from typical consumer photos.  To create an 
attractive page composition in these circumstances, it is important 
to provide the user with tools that automatically adjust image color 
properties to be consistent with other images and template artwork 
in the composition. 

 
Figure 1. Images with related content but different color properties that might 
go on the same page 

The most straightforward way to achieve color consistency in 
a composition is to make all the photos share similar color 
properties as the focal photo on the page, or as the theme artwork.   
In both cases this can be done as a color transfer: extracting the 
color properties of the focal photo or the theme artwork images, 
and transferring them to all photos on the page.   The problem of 
color transfer has been studied with good results in prior work.  In 
Reinhart et al’s 2001 study [1],  a target image’s color is changed 
by adjusting  the mean and standard deviations of its pixel 
distribution in 3 color channels of an opponent color space lαβ to 
be similar to the distribution of the source image.  They 
demonstrated good color similarity and natural appearance when 
the source and target images share similar contents, or when both 
images have fairly homogenous colors.   Xiao & Ma [2] extended 
this work to allow user selection of a swatch in source and target 
images, to enable more controlled transfer directions.  Hou & 
Zhang [4] proposed a color manipulation method that can change 
an image’s colors according to a “color concept” that is based on 
hue clustering on an library of natural color images.  Color changes 
using this method can be drastic, and the target is artistic effect 
instead of preserving natural appearance of images.  There is also a 
large body of work on image relighting, which mostly focused on 
shape and lighting geometry changes.  These methods often need 
original lighting and 3D scene information, or sophisticated 
estimation of these information from the source and target images, 
which are not available in consumer imaging applications. 

Our target application is photo composition in consumer 
publishing.  Consumer photos tend to be dominated by faces and 
familiar objects.  Therefore, aggressive color changes that might 
turn faces green or blue, or completely change a familiar object’s 
color, are not acceptable to users.  We aim to develop a color 
transfer method that satisfies a strong naturalness constraint, so 
that photos in the same composition can have reasonably similar 
appearance while individually still looking like real photographs to 
the user.   We first characterize scene color properties as plausible 
scene color temperature and illumination levels.  An existing color 
adaptation model RLAB (Fairchild & Berns 1996 [3]) is used to 
apply color changes by simulating incomplete adaptation to a 
daylight illuminant with the target color temperature and target 
luminance level.  Without defining a specific naturalness metric, 
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we can nevertheless preserve a level of naturalness by modeling 
color changes as incomplete adaptation to natural illuminants that 
may occur in a user’s real viewing experience. 

Characterizing image color properties  
The first step of color transfer is characterizing source image 

colors with a limited number of parameters.   In preparation for 
color adjustment based on incomplete illuminant adaptation, we 
seek to characterize input images with illumination-related 
properties such as illuminant color temperature (scene CCT) and 
scene luminance level.  This procedure is not an illuminant 
estimation process, as most consumer images come from mid-
range digital still cameras with decent white balance results.  We 
only seek to describe the collective characteristics of an image’s 
color with parameters that are amenable to transfer to another 
image through an illuminant adaptation model.   

To go from a collection of image colors to an estimate of 
plausible illuminant condition, we use a simple Bayesian 
formulation, where the posterior probability of a particular 
illumination condition can be calculated from the likelihood of 
images under each illumination condition and the prior 
probabilities of these illumination conditions: 

 
P(cct=c, lum=y | ri,gi,bi) = P(ri,gi,bi | c,) * P(c,y) * k,        (1) 
 

where k is a constant that does not affect our calculation in any 
meaningful way. 

The likelihood function P(ri, gi, bi | c, y)  is determined by 
simulating rendered colors of surfaces under different illuminant 
CCTs and luminance levels.  The Vrhel surface reflectance 
collection [5] was used since it is reasonably representative of 
natural object surfaces that are commonly seen in consumer 
photos.  For illuminants, we simulated daylight spectra at 9 color 
temperatures ranging from 3000 to 11000K, and at 9 different 
luminance levels from 1-10000 cd/m2, for a total of 81 illuminant 
conditions.  CIE XYZ values were calculated for each surface and 
illuminant combination, and then adapted to the illuminant white 
point using the RLAB adaptation model [3], to obtain a set of 
appearance XYZ values, which are then converted linear sRGB 
values.  Figure 2 shows an example of the rendered appearance of 
the same surface collection under two illumination conditions.  It is 
clear that the same surfaces may have quite different but distinctive 
appearances under different illumination conditions even when 
color constancy is taken into account.  

 

 
 

Figure 2. Example of rendered surface colors under different illuminant 
conditions. 

RLAB only gives us simulated appearance values for the 170 
Vrhel surfaces, which are too sparse to get an empirical likelihood 
function, even with simulated noise added to the response values. 
We need to fit the a functional form so that a likelihood value can 
be calculated for any color that may appear in an image.  A 
separable joint Cauchy distribution is fitted to the simulated sRGB 
values per illuminant condition.  To ensure that fitting a separable 
2-D Cauchy function is valid, we first transform the input sRGB 
values into a 2-dimensional space where the distribution is nearly 
separable.  The coordinates of each color in this new space are 
represented by [v1, v2]: 

 
[v1, v2]’(c,y)  = B(c,y) * Vrgb,                    (2) 
 

where Vrgb represents the XYZ coordinates of input color, and 
B(c,y) is a 3x2 transformation matrix specific to the illuminant 
condition (c, y) (sceneCCT = c, scene luminance = y).  We now fit 
a separable 2-D Cauchy to the distribution of [v1, v2] values: 
 

P(ri,gi,bi | c,y) = C(v1, �1(c,y), x1(c,y))*C(v2, �2(c,y), x2(c,y)),     (3) 
 
Equation (3) allows us to calculate the likelihood of any color 

under an illuminant condition (c, y). For an input image,  the 
likelihood of all colors under each illuminant condition is 
calculated as a product of likelihood of individual pixel color, 
assuming (very roughly) independent likelihoods for each pixel:  

 
 L(R, G, B | c, y) = ∏i  P(ri, gi, bi | c, y)          (4) 
 
Given (4), we only need to specify a prior distribution P(c, y) 

in equation (1) before posterior probability of illuminant conditions 
could be calculated for an image. This prior distribution should 
represent the base probability of each illuminant condition as best 
descriptors of typical consumer images.   We do not have a large 
enough data set to estimate this distribution reliably, therefore we 
simply used an estimate based on our experience of what typical 
lighting conditions are in consumer photos.  The prior distribution 
used in our implementation is a 2-D Gaussian in the CCT - 
luminance space that has a peak near 5500K and 1000 cd/m2, with 
a fairly flat spread.  

The posterior distribution of illuminant conditions can be 
calculated from an image’s pixel RGB values according to 
Equation (1) using the likelihood function and prior distribution 
above.   The scene CCT and luminance combination with the 
largest posterior probability is our descriptor of the image’s colors, 
and the entropy of this distribution over different illuminant 
conditions can be used as a confidence measure of this estimate.  
Figure 3(a) shows a few image examples with color descriptors 
calculated this way, expressed as two numbers per image -- scene 
CCT and luminance.   These values will be used to perform color 
transfer to and from other images.  We emphasize again that these 
values are not  estimates of image white point or scene illuminant, 
but are a set of descriptors used to summarize the colors based on 
their appearance. 

Color transfer using a color adaptation model  
Once we have estimated the plausible scene CCT and 

luminance for both the source image (image to be adjusted) and 
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target image (image whose color property is the target of our 
adjustment), we perform the color adjustment of the source image 
by applying a color adaptation model RLAB, the same model we 
used to simulate image color under each illuminant condition in the 
previous section.  

There are more updated color appearance models than RLAB, 
such as CIECAM02.  The choice of RLAB as our adaptation 
model was based on two considerations.  First, RLAB’s adaptation 
calculation is a sequence of matrix multiplications that can be 
combined into a single matrix after the estimation stage is done, 
and therefore can enable a fast real-time implementation in a 
practical system.  Second, the RLAB model has a strong 
luminance-dependent color adjustment element, which results in a 
large range of color saturation changes based on scene luminance 
level.  This provides a means to adjust the color saturation of an 
image in a way that is consistent with variations people might see 
under different illuminant changes.  This way, we can satisfy a 
naturalness constraint without defining a naturalness metric based 
on pixel values.  

 

            (a)     (b)               (c) 

Figure 3. Example of images with color adjustment to a specified CCT and 
luminance. (a) original images, (b) after color adjustment to cct=2000K and 
luminance=3000cd/m2, (c) after color adjustment to cct=11000K and 
luminance=0.1cd/m2. 

The RLAB model is described in [3] in detail.  Color 
appearance is represented as color values in a reference condition, 
and appearance matching between different illuminants is done 

through matching their reference XYZ values.   Conceptually, our 
color transfer is a process where we try to re-illuminate the scene 
with the target illuminant condition, and then rendering the scene 
for the same display.  We need white point XYZ values for both 
the source and the target illuminant conditions to perform this 
calculation.  Since illuminant conditions are described only as CCT 
and luminance levels,  we calculate the associated white point 
XYZ values from simulated daylight spectra at the same CCT as 
the source or target scene CCT descriptor.  These two white points 
can be represented as two sets of XYZ coordinates W1 and W2. 
From the source and target illuminant condition white point XYZ 
values, we can calculate the RLAB adaptation matrices that goes 
from image XYZ values to reference XYZ values.  Let F(xyz, c2, 
y2) be the RLAB adaptation matrix of image XYZ values from 
source illuminant condition to the reference condition, and G(xyz, 
c1, y1) be the adaptation matrix from target illuminant condition to 
the reference condition, and H(rgb) be the transformation matrix 
from image linear sRGB values under display condition to XYZ 
values under reference condition,  then our color adjustment to the 
target color characteristics is a sequence of matrix operations that  

 
(1) transform image RGB values to reference XYZ values 

(representing their rendered appearance) using H, 

(2) transform the appearance XYZ values back to scene XYZ 
values using F-1, 

(3) calculate the scene XYZ values under the new illuminant 
condition, by independent scaling of the cone responses M-1 * 
[(MW2)./(MW1)], where M is the conversion matrix from XYZ 
values to cone responses, 

(4) transform the new scene XYZ values to reference XYZ values 
using G, and then render for a display using H-1. 

This whole sequence can be combined into a single transformation 
matrix T: 

         T = H-1 * M-1 * [(MW2)./(MW1)] * F-1 * H,        (5) 

which can be calculated once for each source and target image 
pair, and then applied rapidly to each pixel of an image to obtain 
the color-adjusted image very efficiently in a real application.   

To make several images in the same composition share 
common color properties, we can choose a “focal” image as the 
target, and adjust colors of all other images toward this target.  The 
use of scene CCT and luminance values as color descriptors also 
makes it easy to adjust all images to a specified CCT and 
luminance combination, or to an “average” target, i.e. adjust scene 
CCT and luminance to the average of estimated scene CCT and 
luminance values of these images.  The examples in Figure 3(b) 
and 3(c) show how this transfer process can modify color 
properties of several images to a common target to make them 
more consistent in appearance.  
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Characterization and transfer of image tone 
properties  

If user photos come from different sources such as different 
cameras or from the internet, the images can vary in both color and 
tone properties.  Adjusting color using our method helps bring the 
appearance of these images closer to each other, but sometimes 
color adjustment alone isn’t enough.   To add a “tone-transfer” on 
top of color transfer, we adopt a similar approach and first find a 
small set of parameters that describe the tone characteristics of an 
image.  We found that using two simple statistics (mean and 
standard deviation) on L* values of image pixels gave good 
results.  The use of L* statistics is partially based on results from 
an image tone preference study [6].  For stability consideration we 
use only pixels around “busy” areas in an image to calculate tone 
statistics.  Local busy-ness index is calculated as a highly blurred 
edge energy map.  Pixels with busy-ness index above a threshold is 
included in the L* statistics.  The busy-ness threshold is 
determined by scene key -- threshold is higher for very high or 
very low key scenes, which ensures that large bright or dark 
regions do not bias the L* statistics too much, and won’t be 
adjusted to gray in the tone transfer process.  The target L* mean 
statistic is constrained within a threshold distance from the existing 
L* mean, to avoid tone adjustment too far from the original, which 
can cause severe distortion of image appearance and loss of spatial 
detail after tone adjustment for some images. 

Tone adjustment is done with a simple S-shaped global tone 
curve for most images. However, when the L* target results in 
smaller dynamic range for the image, we perform a local tone 
mapping using a simple retinex-type algorithm to compress image 
dynamic range before global tone adjustment. This step is 
necessary to preserve spatial details through the tone transfer 
process.  

Figure 4 shows a flow chart illustrating the steps we described 
so far to do color and tone transfer for images to be used in 
composition.   

 

 
Figure 4. Steps in color and tone transfer with naturalness constraint. 

Results  
We applied the color and tone transfer algorithms in a couple 

of real-world application scenarios.   Adjustment of several images 
to a common target appearance was discussed earlier (Figure 3).  
Here we specifically look at applications where images are 
adjusted to be more harmonious with designed background and 
accent artwork.   

In this case color and tone descriptors were calculated for 
both the source images and the artwork images.  The  artwork 
images are treated exactly the same way as regular photos, 
regardless of how they are generated.  We then transfer the color 
and tone properties of the artwork to user images.  User photos can 
be color- and tone-adjusted to blend well with design artwork of 
significant variations while still looking like “real” photos.  Figure 
5 shows results of composition of the same set of user photos to 3 
different page background designs.  The user photos (top row) are 
quite different from each other in both dominant color and in tone 
properties, and all of them different from the artwork color 
properties in some way. The compositions are arranged in 2 
columns, the left showing compositions after our color consistency 
algorithm, and the right column without such adjustments. 

Composition in Figure 5(a) demonstrates that our color and 
tone transfer process is not a simple case of forcing all colors to be 
similar to the artwork color -- which would result in highly 
unnatural colors for the sky and grass; instead, we find the scene 
color descriptors and then use an adaptation model to push all 
colors as a whole to the target descriptor.  The typical result of our 
operation is that there will be more shared colors between target  

 

 

  
 (a) 

  
(b) 

  
(c) 
           (1) with consistency               (2) without consistency 

Figure 5. Examples of page compositions with color and tone transfer from 
artwork to user photos. 
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image and transformed source image, but not all source colors are 
pushed to be similar to target colors.  In figure 5(a) the sky and 
grass colors stayed blue and green, while skin tone and some wall 
colors changed to be more consistent with artwork colors.    

The artwork in Figure 5(b) and 5(c) have vastly different 
color and tone properties, but the estimated color descriptors are 
fairly similar for the two of them, and thus the adjusted colors of 
user image are also similar between these two compositions.  It is 
easy to see that the color and tone adjustments in both cases 
resulted in shared colors with the background artwork, and gave 
satisfactory overall appearance.  We use this example to emphasize 
that our method is not a straight transfer of colors in the traditional 
sense, but rather a transfer of an “illuminant impression”, which 
often gives compelling compositions that seem to be hand-tuned, 
without causing colors of skin and natural objects to be distorted in 
unnatural ways. 

Summary 
We proposed and implemented a set of color and tone transfer 

algorithms that enable color adjustment of consumer images under 
a strong naturalness constraint.  Color properties of input images 
are estimated and described with a small set of descriptors based 
on plausible illuminant at the scene.  Color transfer is performed as 
a re-adaptation process using the RLAB color appearance model.   
The use of a color adaptation model to perform color transfer 
enables us to impose a naturalness constraint on the adjustment 
process without explicitly defining a naturalness metric.  Our 
method is neither a white point estimation and correction process, 
nor a direct transfer of target colors to source images.  Instead, we 
estimate and transfer an illuminant “impression” of the image.  
This makes it possible for us to treat artwork images the same way 
as photographs, and use artwork as color transfer target.  In the 
case of a single-photo composition, we can easily reverse the 
process and modify artwork colors to match the user photo in the 
same way. 
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