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Abstract 
In printing, ink is one of the most important cost factors, 

which accounts for approximately 25-30% of the cost per page; 
therefore, reducing ink consumption is of great interest. The 
traditional approach to this problem is to modify the ICC profile 
to increase the use of black ink instead of the combination of cyan, 
yellow, and magenta; this approach is known as the gray 
component replacement (GCR). While this strategy reduces ink 
consumption, it often results in visually grainy images in otherwise 
smooth regions, and is therefore of limited use or even 
unacceptable for many applications, such as photoprinting. 

In this work, we propose a novel, context sensitive and 
spatially variant GCR method, which yields ink consumption 
figures that are similar to an aggressive GCR, but in contrast 
produces perfectly acceptable print quality results. Our approach 
is based on the visual masking effect: image areas with high 
activity level, such as high contrast textures, mask the increased 
graininess, and other inaccuracies such as (small) color shifts. 
Therefore, we propose to dynamically vary the amount of gray 

of the image. In lighter, smoother regions, less aggressive GCR is 
applied, and the image quality is preserved, while in more active 
regions where the change is not visible, more aggressive GCR is 
applied. 

The performance of the proposed method is tested on images 
randomly chosen from several photo collections. The initial results 
indicate about 15% reduction in overall ink consumption with 
perfectly acceptable print quality. 

Introduction  
Currently, the main approach to reducing ink consumption 

and keeping good color reproduction is building optimized ICC 
profiles (e.g., [1]); that task is performed by highly qualified color 
scientists. In that approach, a reduction of ink consumption is 
achieved by increasing the use of black ink (K) instead of the 
combination of cyan, yellow, and magenta (CMY). This strategy is 
known as the gray component replacement (GCR). However, that 
method is quite limited since, when used aggressively for lower ink 
consumption, GCR causes grainy appearance of images, and is 
therefore unacceptable for many applications such as 
photoprinting. 

The proposed approach 
We take an alternative approach to the problem of reduction 

of ink consumption that can be combined with an optimized ICC 
profile. Figure 1 outlines the main steps of the proposed approach. 
We explain these steps in details in the next section. For now, we 
concentrate on the main idea of our approach.  

Our approach is based on the visual masking effect: image 
areas with high activity level, such as various textures, mask the 
increased graininess and other print inaccuracies, such as color 
shifts and others. The masking idea is widely used in watermarking 
(see for example [2]-[4]), where one embeds watermarks in the 
areas of the image where they are perceptually invisible. Although 
the masking idea behind our approach is similar, our goal is quite 
different. In order to illustrate the masking phenomenon, we show 
the four images in Figure 2. Images 2(a) and 2(c) are the originals, 
and images 2(b) and 2(c) are the corresponding images with a 
same amount of additive random noise. Clearly, the L2 distance 
between 2(a) and 2(b), and the L2 distance between 2(c) and 2(d) is 
the same. However, visual differences are much more noticeable 
between 2(a) and 2(b), as the original image is smoother, than 
between 2(c) and 2(d), where the original image contains various 
textures.  

Therefore, our approach is as follows: We first analyze a 
given image, and estimate the map of local activity. Then we vary 
the aggressiveness of the ink replacement (GCR) in a pixel-wise 
manner, according to the estimated local activity strength. 

The rest of the paper is organized as follows. We first 
compare the traditional Color Conversion scheme to the proposed 
Color Conversion scheme that incorporates the idea of the masking 
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effect. We then get into details of the main steps of the proposed 
scheme, and finally show results of experiments we conducted. 

Color conversion guided by image analysis 
The traditional color conversion steps are depicted in the left 

side of Figure 1. The main steps of the proposed color conversion 
scheme that incorporates the idea of masking effect are depicted in 
the right side of Figure 1. The first two steps in both schemes are 
identical: First, a sRGB image is converted to Lab space, and then 
the ICC profile of a specific printer is applied to transfer the Lab 
image values to CMYK values. As described previously, the ICC 
profile would generally be optimized for print quality, or it may 
already be optimized for lower ink consumption. In fact, these two 
steps perform perceptual color conversion, the gamut mapping 
from RGB to the device CMYK. The rest of the steps are done 
colorimetrically, aiming at the best match to the device CMYK 
color. 

In particular, the following steps are unique to our scheme. 
First, we apply the printer input profile to transfer back to the in-
gamut image Lab values. We use these values to estimate the local 
level of image activity A(i,j) for each pixel (i,j), as described in the 
following section. Given this value of activity, we calculate a new 
value of K. 

If the particular pixel is in a smooth image area, the 
corresponding activity value will be very low or even zero. In this 
case, the original K will be preserved, and therefore there will be 
no increased graininess in this particular area. If, in contrast, a 
local activity value is high, this indicates that there are intrinsic 
image features, such as various textures, which are high frequency 
variations. The addition to the original K will be somewhat 
proportional to this local activity value. 

The last step of the scheme, the color search, computes the 
new CMY values. In particular, given the newly calculated K value 
and the Lab image values for pixel (i,j), we look for the new CMY 

values, which along with KNEW, yield the closest match to the 
original Lab value. The details of the search algorithm are 
described below. 

Perceptual local activity 
There are several possible choices for the calculation of local 

activity; one of the simplest measures would be based on the image 
block variance, or some thresholded version of it. More 
sophisticated methods such as [5], characterize textures as fine 
scale details, usually with some periodicity and oscillatory nature. 
In [6], the authors propose Total Variation model of textures and 
edges. 

While these methods are theoretically sound, they are not 
always well supported by the visual experiments, and do not take 
into account human visual system (HVS) properties and 
considerations. In turn, many compression schemes, such as cosine 
or wavelet transform based ones, exploit the HVS properties (see 
for example [7] and [8], and the references therein). In JPEG 
compression, small quantization steps are set for low-frequency 
DCT components, whereas large steps are set for high-frequency 
components. It is this insight that drives our approach of 
calculating the local activity measure. In particular, we first 
calculate the discrete cosine transform of overlapping image blocks 
of size 4x4. We found that using this block size gives similar 
activity values to the ones obtained using the 8x8 block size, but is 
much less computationally intensive. We then multiply the 
resulting DCT coefficients by an HVS weighting matrix which is 
calculated using widely available JPEG quantization tables; the 
weights are proportional to the quantization step sizes. The 
resulting local activity measure for pixel (i,j) is calculated as the 
square root energy of the weighted local DCT coefficients of block 
B(i,j) with the center-pixel coordinates (i,j), excluding the DC 
component, and divided by the local mean lightness value 
C1[B(i,j)]. In math notation, 
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where Cm are block DCT coefficients, and Wm are the JPEG 
quantization table weights. Further, function  is the image detail-
removing operation applied to each block B[(i,j)]. 

This operation effectively zeroes out the image details in the 
block that are below a threshold . This threshold is calculated 
using the Contrast Sensitivity Function (CSF). The rationale 
behind this operation is as follows. If an image has large number of 
pixels but the print size is small, then 
will not be perceived, and otherwise active area will look relatively 
smooth. In this case, it is desirable that the corresponding activity 
is adaptive to reflect this phenomenon. Clearly, the perceived 
activity strength is dependent on the print resolution and on the 
number of pixels in an image. These two factors determine the 
physical pixel size. Given this pixel size and a standard viewing 
distance, we use the well-known CSF curve to calculate the 
minimal contrast required to perceive differences between 
neighboring pixels. The resulting perceptual activity is therefore 

(a) (b) 

(c) (d) 

Figure 2. Illustration of the masking effect. Identical noises are added to (a) 
and (c). The noise is more visible in (b) which is smooth as compared to (d); 
the noise is masked by the intrinsic image features in (d). 
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adaptively adjusted to a given printing resolution and a given 
image size. 

An example of such activity map is presented in Figure 3. The 
bright areas in the map correspond to high activity in the image. In 
these areas, more aggressive ink replacement (higher black ink 
usage) will not influence the perceived quality of the print because 
of the masking effect. 

The estimated local activity value determines the new amount 
of black ink. In order to evaluate the amount of black ink that can 
be added without visually noticeable grain and color shift, we 
conducted the following experiment. We printed 6 pages, each 
containing 10x15 patches of the same color (Lab specification). On 
one axis, the patches vary in the amount of printed black (K), 
while on the other axis, the pages varies in the level of activity 
(noise of various types with gradually increasing variance). Our 
purpose was to achieve a formula for the new values of K (KNEW) 
that will, on the one hand, assure optimal quality, and on the other 
hand, achieve the minimal ink consumption. The resulting formula 
which was derived experimentally is: 

 
jiAF

NEW jiKjiK ,1,3.0max100/,100,  (2) 
 
where K(i,j) is the initial black ink amount for pixel (i,j) 
determined by a given ICC profile, KNEW is the new, higher value 

of black ink to be used, and F is the ink replacement strength (i.e., 
the GCR aggressiveness factor; higher value corresponds to higher 
black ink consumption). 

Color search algorithm 
Given the new black ink amount KNEW, the color search 

algorithm  the {Lab, KNEW}-to-CMY module in Figure 1  
calculates the new CMY values that, along with KNEW yield the 
closest match to the original Lab values. In order to do that, we 
calculate the conversion table from {Lab, K} to CMY by using the 
device ICC profile. In particular, we use the colorimetric A2B1 tag 
to create the printer characterization data (the so-called forward 
model). We then perform the color search by the following 
iterative steps: 

1) At each iteration n, starting from n=0, given KNEW and 
the current CMYn, we calculate the new Labn+1 values 
using the forward model  

2) We compare the original Lab to Labn by calculating E 
distance. If E is smaller than a predefined threshold, 
then we finish the iterations. If not, we proceed with 
iterations as follows.  

3) At each iteration step, we perform the following sub-
steps. We change each one of C, M, and Y values at a 
time, with the increments up and down from the current 
value. We calculate the corresponding E, and replace 
the particular color to a new value only if E has 
decreased. 

We found the above algorithm converges to (nearly) the same 
CMY values regardless of its starting point, as long as it is selected 
sufficiently close to the initial CMY values. Therefore, we use 
these initial CMY values as our starting point in the first iteration. 
This search algorithm ensures the color preservation property of 
the method. 

Experimental results 
We tested the performance of the proposed method on several 

sets of images randomly chosen from various image banks. We set 
6 levels of the ink replacement strength F; each level corresponds 
to different amount of black ink used instead of CMY inks. 

We have conducted an experiment with 59 different images 
having various resolutions, and containing various amounts of 
active areas. We measured the consumed ink amount for images 
with original and modified CMYK values as follows. The coverage 
values of all separations were transformed through a job LUT and 
a machine LUT of a particular printer (we used an HP Indigo 
Press), and translated into ink weights. The savings in each 
separation were computed as the difference in weight between 

consumed by the original CMYK. In particular, the per-pixel ink 
consumption values were averaged over the whole image, yielding 
the Average Ink Consumption Per Image (AICPI). The saving 
amount for each separation Q = C, M, Y, K in percentage from the 
original usage is calculated as: 
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Figure 3. Original image (upper), and the corresponding Activity 
map (lower). 
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The total ink consumption reduction percentage, achieved 
using the proposed approach is calculated as: 

     .
,,, KYMCQ
Qtotal SS  (4) 

Real images 
The resulting total ink consumption reduction percentages for 

the 59 tested images are presented in Figure 4 and Figure 5. In 
Figure 4, the values are sorted in the ascending order. The leftmost 
(smallest) bar corresponds to the lowest total ink consumption 
reduction percentage of 2%. The rightmost (highest) bar 
corresponds to the largest total ink consumption reduction 
percentage of 25%. The two corresponding images are shown in 
Figure 6. As expected, smooth image (left) yields the lowest ink 
consumption reduction, while more active image (right) yields 
substantially greater ink consumption reduction. 

Figure 5 shows the corresponding actual differences of the ink 
consumption per pixel for each separation (in micro grams), 
calculated for each of the test images. As can be seen, the black 
consumption for all images was increased (reflected by negative 
savings), while the cyan, magenta and yellow consumption was 
reduced. The sum of these differences resulted in the total savings 
of inks (blue dots). 

Figure 7 shows total ink consumption relative to its original 
consumption, as a function of F, the GCR aggressiveness; the 
restraining factor of 0.3 in (1) restricts higher ink consumption 
reduction for larger values of F. This explains relatively small 
additional gain in saving for F=25 and F=30 compared to F=20. 

A committee of 3 color experts performed visual comparison 
of the ink-replaced prints and the standard ICC profile prints, and 
found that the print quality of 95% of the prints in the test was 
perfectly acceptable up to the aggressiveness level of F=20. This 
further proves the effectiveness of the proposed method 

Summary 
In this work we proposed a novel approach to the reduction of 

ink consumption. It is based on the visual masking effect: image 
areas with high activity level, such as high contrast textures, mask 
the increased graininess and other inaccuracies such as (small) 
color shifts. We dynamically vary the amount of gray replacement 

image. In lighter, smoother regions, less aggressive GCR is 
applied, and the image quality is preserved, while in more active 
regions where the change is not visible, more aggressive GCR is 
applied. 

The local pixel-wise activity measure is calculated as the 
square root energy of the weighted local DCT coefficients, with 
weights derived from the HVS-motivated standard quantization 
table. Furthermore, the map strength is adaptively adjusted to print 
resolution and to actual image size (in pixels), according to the 
CSF curve. 

The performance of the proposed method was tested on 
images randomly chosen from various photo collections. The 
initial results indicate about 15% overall ink consumption 
reduction with perfectly acceptable print quality. 
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Figure 7. Total ink consumption relative to the original consumption as a 
function of F, the GCR aggressiveness parameter (average over 59 tested 
images) 

Figure 6. Two images from the test with the lowest (left) and the highest 
(right) ink consumption reduction values. 
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